「常陽」の格納容器について

高速実験炉建設部*

1. まえがき

高速実験炉「常陽」の格納容器の第1回の耐圧検査試験を昭和46年3月に無事故完了した。この格納容器は、軽水炉（とくにPWR）のものと大きな相違はないが、ナトリウム冷却の高速炉の最初の格納容器であるので、関係各位に依頼し、その設計、製作、工事、試験の概要をまとめた報告書を作成した。

この機会を利用して、工場、現場において、困難な条件下での立会検査ならびに指導をいたした原水力規制課の検査官各位に深謝する旨を表するとともに、設計製作工事を担当された東京芝浦電気、石川島播磨重工、素村鋼板を製造された川崎製鉄各関係各社の御努力に敬意を表したい。

2. 設計の概要

2.1 安全設計の推考

原子炉施設は当然のことながら、万一の事故時にも公衆の安全を確保すべきであることを要請される。この基本的要請を達成するため「原子炉立地審査指針」（昭和39年5月、原子力委員会）において以下の三つの基本的目標が決められている。すなわち

1) 敷地周辺の現象、原子炉の特性、安全防護設計を考慮し、技術的見地からみて最善の場合には起こらぬ事と考えられる重大な事故（以下「重大事故」という。）の発生を仮定しても、周辺の公衆に放射線障害を与えないこと。

2) さらに、重大事故を超えるような技術的見地からは起こるとは考えられない事故（以下「仮想事故」という。）の発生を仮定しても周辺の公衆に著しい放射線障害を与えないこと。

3) なお、仮想事故の場合にも国民遺伝子とに対する影響が十分に小さいこと。

原子炉施設は、これらの条項を満たすための最終的な防護施設として、一般に格納容器を設置している。

「常陽」においても、これらの重大事故、仮想事故はもちろんのこと、運転上考えられる種々の小さな事故についても検討を行い、それらの解析結果から格納容器の設計条件を定めている。すなわち、「常陽」の格納容器の設計に関連する事故としては

1) 再臨界事故（仮想事故）

2) 原水力停止中におけるナトリウム火災の二つがあり、それぞれの最も苛酷な条件から

設計圧力 1.35kg/cm²
設計温度 150℃（Na火災から）

の設計条件が決定された。

その他の設計条件については後にまとめて述べる。

(2) 事故解析

格納容器の設計条件を決める前述の二つの事故につき、解析条件ならびに結果の概要について以下に述べておく。

1) 再臨界事故（仮想事故）

再臨界事故は、炉内ナトリウムが瞬時に発生したと仮定し、全燃料棒が溶融して下部に重力落下し再集合、即発臨界に達する
第2.1図 仮想事故時格納容器内圧および温度変化

ことを仮想したものである。この場合に発生する衝撃力に対して、図表プラグ（付属する小プラグ類を含む）は、そのエネルギーを吸収するとともに、ナトリウムも空気雰囲気に出さないように設計されているが、なおかつ50kgのナトリウムが格納容器内空気雰囲気に出され、瞬時に燃焼したと仮想する。

このような事故に対して格納容器内温度圧力は第2.1図のような推移をとどめ、最高圧力は1.17kg/㎠、鋼壁最高温度は約80℃となる。

2) ナトリウム火災

原子炉一次冷却系の主要部分は、すべて二重管を用い、さらに一次冷却系機器室はすべて真空雰囲気にしており、一次ナトリウムの火災に対しては十分強度対策を講じている。また配管、タンク等には漏洩検出器が設置されており、知らぬ間にナトリウムが漏洩していることも考えられない。しかし、ここではナトリウムが漏洩していたと仮定して、床下雰囲気を空気にして推定した時ナトリウム火災が生じることを想定する。

プール状に漏洩したナトリウムの最大表面積を200㎥とし、反応速度は絶対温度の平方根ならびに酸素濃度の比例として、格納容器内温度、圧力を求める第2.2図のようになる。鋼壁温度は約4時間後に最高となり、約105℃、圧力は約30分後に最高0.48kg/㎠に達する。

第2.2図 原子炉停止時のナトリウム火災事故時圧力および温度変化

また、ナトリウム火災時には格納容器内の酸素が消耗されるため、火災後約10時間経過すると格納容器内温度の低下に伴ない、負圧になる恐れがある。
この時格納容器を保護するため真空破壊弁が取付けられ、格納容器内が0.05kg/㎠以上負圧にならないように設計されている。
なお、真空破壊弁は事故時、負圧後閉、圧力回復後開の動作を、この程度の低い差圧により確実に行う必要があるため、試作試験によりその性能を確認している。

（3）許容漏洩率

前述の再臨界事故、ナトリウム火災等の事故後、格納容器内に放出された放射性物質を保持するため、格納容器には気密性が要求される。
格納容器の漏洩率は、内部空気圧気の温度、圧力によって異なり、また測定時のプラントの状態に応じて測定精度も異なるので、このことを考慮して許容漏洩率の値をきめなければならない。

「常陽」の各状態における許容漏洩率の値は第2.1表および第2.3図に示される。これらの値が決定された根拠ならびに参考事項の主要な点について以下でふれておく。

1) 設計漏洩率は、再臨界事故時に公衆災害に対して十分余裕があり、かつ現状の技術で十分可能な値として、事故条件下（360℃、1.35kg/㎠）において0.7%/dayを選定した。

試験条件下においては、第2.3図にも示
第2.1表「常陽」格納容器許容濃度

<table>
<thead>
<tr>
<th>番号</th>
<th>濃度率</th>
<th>試験</th>
<th>試験温度</th>
<th>容器浸透率</th>
<th>試験期</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.35</td>
<td>宮崎</td>
<td>寒湿</td>
<td>0.03</td>
<td>46年8月実施</td>
<td>安全対策申請後工場確認</td>
</tr>
<tr>
<td>2</td>
<td>1.35</td>
<td>宮崎</td>
<td>寒湿</td>
<td>0.45</td>
<td>49年2月予定</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.675</td>
<td>宮崎</td>
<td>寒湿</td>
<td>0.286</td>
<td>同上</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.675</td>
<td>宮崎</td>
<td>寒湿</td>
<td>2.12</td>
<td>1.90</td>
<td></td>
</tr>
</tbody>
</table>

さらに、設計圧力（1.35kg/cm²）

常温（20℃）に換算法すれば、濃度率の値は0.476%/dayとなり、これに余裕をみて0.45%/dayを許容濃度とした。

実際の原子炉の運転においては、前記の値からさらに経年変形等の劣化に対する余裕をみるべきことが、日本電気協会の規程（原子炉格納容器の浸透試験、JEAC 4203－1970）にも述べられているので注意を要する。

第2.3図 格納容器許容濃度

（動力炉技術No 2 1971.11）
技術資料

気温の圧力バランスを漏洩率試験時にも保っておく必要のあること、等の理由により、軽水炉などと校べて試験条件はかなり異なっている。従って運転開始後の漏洩率検査精度はかなり悪いことが予想される。「常温」の場合にも十分な検討はまだできていないのが、初めての経験であり十分安全側にみて、ほぼ1位の余裕をとり5％/day（事故条件下）をナトリウム注入後の確認漏洩率として設定した。従って再臨界事故等の災害評価も、この値もとづいて行なわれる。ナトリウム注入後の確認漏洩率の関係も第2.2図に示されている。

3）「常温」格納施設は、円筒部上部にアニュラス部を持つ、いわゆる半二重構造であるが、二重になっていない頂部半球からの漏洩率を設定すべきか否かの問題がある。実際頂部半球は完全な溶接構造であり、シール部分をもたないため漏洩はあると考えられ、災害評価のための前提として0.009％/day（事故条件下）を設定した。この数値は同様の格納施設の全体漏洩率測定実績に適当な余裕をもったものである。

0.009％/dayをドーム部と全格納容器の表面積比（約5倍、溶接線長さの比より大きい）で全体に換算し、常温（20℃）での値にひきおおせて、0.03％/dayとする。この値は今回の初期漏洩率試験時にしか確認できないこと、現在の漏洩率測定精度内に何とか納まっていると考えることなどから、初期漏洩率測定試験の判定基準として採用することとした。

これにより、ドーム部からの漏洩は石鹸水試験のみならず、全体漏洩率からもチェックされることになる。

2.2 設計条件

格納容器の設計条件は前述のように原水炉停止中の1次冷却系Na漏洩事故、100MWeにおける仮想事故および敷設地附近の気象条件を考慮し、それに基づきの余裕をもたら最高圧力、温度、最低温度および真空破壊時の作動点が決められた。また、格納容器許容漏洩率については格納容器

本体完成時のナトリウム注入時、注入後にそれぞれ、仮想事故、格納容器内の温度、構造等の条件を考慮して決定された。

(1) 压力

| 最高圧力 | 1.5kg/cm² |
| 最低圧力 | 0.05kg/cm² |

(2) 温度

| 鋼製温度 | 最高150℃ |
| 鋼製温度 | 最低-15℃ |

(3) 漏洩率

1）格納容器本体完成時

0.03％/day
（試験圧力1.35kg/cm² 温度常温）

2）ナトリウム注入後0.45％/day
（試験圧力1.35kg/cm² 温度常温）

3）ナトリウム注入後設計許容漏洩率

漏洩率2.12％/day運転全許容
漏洩率1.9％/day（試験圧力0.675kg/cm²常温）

本格納容器の設計実施における設計製作工事は原子炉等規制法およびその他の関係規定にもとづいて施行されたが、設計の詳細はA S M E CODE SECTION II（1988）により行なわれた。また格納容器に於ける各設計荷重は次の通りである。

(1) 重力

1）容器および各種付属機器重量
2）各種荷重
3）積荷重による60kg/m²の重力

(2) 設計圧力

1）設計内圧1.35kg/cm²（仮想事故等の1.17kg/cm²をさらに余裕をとり最高使用圧を1.5kg/cm²としこの90％の1.35kg/cm²設計圧とした）
2）設計外圧は0.05kg/cm²

(3) 風荷重

速度压q =60/h kg/m²（h：地盤面よりの高さ）

(4) 地震荷重

1）設計地震波は基礎底面における最大加速度0.15gと地震波について行なった動的解析結果から求めた水平方向の地震度と
建築基準法および建設省告示1074号に定められた基準を3倍した3Coと比較して、より大きい方の震度を採用した。
2) 設計垂直方向地質力は、地震構造断面の震度を考慮して、1.27 gを用い、水平方向の地震力を同時
にかつ不利益方向に作用させた。
3) 假想の地震については動的解析にもとづく設定の地震を、それぞれ1.5倍した値を考慮し、その際に
も格納容器の機能を維持できるよう検討した。

(5) 熱荷重
事故事象においてサンドクッシュ上部を境にして苛酷な温度をあたえた（上部E.L）

「常陽」の格納容器について

14.9m以上150℃、下部EB.Lを14.9m以下
-15℃）。

(6) 格納容器シヤラグに作用する力

格納容器のコンクリート密着部に作用する
引張モーメントによる滑動力は格納容器制
板の円周単位長さあたり最大約340tとした。

この他各設計荷重組合と運転、事故時、地震時の
各条件とに対する応力強さ限界を検討し、機能
に損傷しないことを確認した。また、腐食性
として本格納容器は乾式であり、これを構成する
鋼管はすべて防錆塗装が施されるので腐食性
は考慮外とした。

2.3 構造の概念

原子炉格納容器は原子炉施設の主要部分を収

第2.4図 所属用アロック概略図

動力炉報告No.2 1971.11
第2.2表 「常陽」格納容器主要材料一覧表

<table>
<thead>
<tr>
<th>主要部材</th>
<th>対 株 部 分</th>
<th>材 料</th>
<th>物質密度 (kg/m³)</th>
<th>頂 付 点 (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>格納容器本体</td>
<td>鍋、管板</td>
<td>JIS G3103 SB4231</td>
<td>10.55</td>
<td>22.5</td>
</tr>
<tr>
<td></td>
<td>外圧強度検定</td>
<td>ASME SA-516 Gr 60 SA-516 Gr 60</td>
<td>10.55</td>
<td>22.5</td>
</tr>
<tr>
<td>トランスポーロータ駆動部</td>
<td>耐圧部</td>
<td>同上</td>
<td>10.55</td>
<td>22.5</td>
</tr>
<tr>
<td>トランスポーロータ駆動部</td>
<td>ベネテーションナズル</td>
<td>ノズル呼び径400A以下のもの</td>
<td>JIS G3460 STPL30</td>
<td>9.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ノズル呼び径400Aを超えるもの</td>
<td>JIS G3103 SB4231相当 (ASME SA336 Gr 1)</td>
<td>10.55</td>
</tr>
<tr>
<td>所属用アーチロックおよび非常用アーチロック</td>
<td>耐圧部</td>
<td>同上</td>
<td>10.55</td>
<td>22.5</td>
</tr>
<tr>
<td>機器搬出入口</td>
<td>耐圧部 (液を含む)</td>
<td>JIS G3103 SB4231相当 (ASME SA-516 Gr 60 SA-516 Gr 60)</td>
<td>10.55</td>
<td>22.5</td>
</tr>
</tbody>
</table>

訳し、次の各部より構成される。

1. 原子炉格納容器本体
2. トランスポーロータ駆動部およびトランスポーロータ駆動部
3. 格納容器通常部のうちベネテーションノズル
4. 所属用アーチロックおよび非常用アーチロック
5. 機器搬出入口
6. 格納容器通常部
7. 真空破壊弁

今回の建設の行なわれたのは(5)までの各部であるが、以下これについて述べてみる。

格納容器本体は地盤面下31.8mの硬質砂層の上に設けられた高強度鉄筋コンクリート構造基礎上に取りつけられ、設計圧力、温度、荷重条件を十分考慮したASME CODE SECH低圧用アルミウム鋼板の溶接構造密閉容器で上部鋼板、下部鋼板、接合部で円形断面の内部に地震時十分な耐震をもたせるためのコンクリート中に埋設される多数のシャフトがある。

また円筒上部および中央部に外圧による破壊防止のため補強リングが設けられ、これら補強リングの中央部にNa水蒸気の格納容器内圧下防止用として真空破壊弁がこれつけられる。格納容器運転曲面とは同位置に作業員の出入用として所属用のアーチロックおよび非常用アーチロックは、二重構成機械形状のロック構造で気密は芯につけられたシリコンゴムガスクロックで行なわれ、芯は内部面にそれぞれ設け開閉時にアーチロック内圧を調整するため圧力平衡弁があり芯は誤操作のないよう相互に機械的インターロックが設けられる（第2.4図参照）。

また機器搬出入口内径5900mmで格納容器本体に接続され横断盤円筒部をこれを閉鎖する欠形の側部よりなり、肩はフランジ型ボルト組みで側部を補強するシリコンゴムスケッチを使用した二重シール構造にしている。格納容器通常部は格納容器本体の側部を貫通する配管およびケーブルベネテーションに用いられ、格納容器本体に影響のない位置に分散配置している。

トランスポーロータ駆動部は約5900mmの鋼管円筒内で、さらに本駆動部上部に約5200mmの駆動収納部があり、それぞれ格納容器本体内部側面部を閉鎖する床杭で補強された平板状の側面と側部よりなっている。なお、格納容器に使用された主な材料は第2.2表に示す。

3. 製作根付工事の概要

3.1 工場製作

（1）概要

「常陽」原子炉格納容器の工場製作および製作の大部分は、石川島製造工場の原子炉格納容器および製造機械製作工場およびトランスポーロータ収納部は、原子炉格納容器の製造工場である横浜第3工場で、さらにご使用する半球錐底板、下部鋼板およびシーニング鋼板のプレス加工、スタビリング加工は三島製造工場で行なわれた。

3月20日に耐圧部材については、せい性破壊に対しより強度を必要とする。
板取り、ガス切断後オース型、メス型の金型にて成形加工を行なう（写真3.4）プレス後正配にマーキング（写真3.5）し、開先ガス切断を施行。
円筒部鋼板、外圧補助環、建設用支柱、

写真3.3 ガス切断

第3.4図 原子炉格納容器工場製作工程

動力炉技報No2 1971.11
エアロク、トランスファーローター受納部のケーシングシェル、ベネトレーションについてはプレスにて鼻曲げ後、ベンディングローラーにより成形加工。

3）溶接
溶接は通産省溶接工技能確認試験で認定された溶接士が施行（写真3.6）、工場製作分についてはほとんど手溶接によるが、トランスファーローター受納部のエンドフレートの溶接シートのみ自動溶接機を使用して行なう。

4）焼純
「電気工作物の溶接に関する技術基準を定める省令」により、エアロク、トランスファーローター駆動装置受納部、ベネトレーション、機器搬出入口、トランスファーローター受納部等焼純行なう。

5）仮組
仮組定盤上に組を伏せた形に仮組立。
（写真3.7）建設用支柱はナックル部仮組後、ナックル部に溶接し、トランシットにて切断位置を定め仕上げ切りを行なう（写真3.8）。

6）寸法検査
曲げ検査および組立時——溶接後——焼純後というふうに各製造中のプロセスにおいて寸法チェックを行なった（写真3.9、写真3.10）。

（3）本体付試験用機械試験
溶接薬剤、板厚、焼純の有無などの溶接条件の変化に応じて、本体付試験板を設け本体のシ
ル部撤去開始より8月24日耐圧、漏洩試験終了迄、主要工事を7ヶ月間で終了した。この間、昼夜兼行の高所作業にかかわらず、無災害にて工事を終了した。本工事が先立ち昭和45年11月17日より工事用仮設構設置、同構設置より100Tレッカーにて35Tタワーデリック組立、昭和46年1月22日、水戸労働基準監督署の立会い検査に合格、使用開始した。

「常陽」格納容器の特徴として、地上組立は頂部鏡板1枚、2枚、トップおよびボトム部を3枚1ブロックにしてライフスファーローターケーシングを1体にしたことにとどまり地盤鏡板ナックル部、クラウン部を始め、側板ベネトレーション等すべて空中工事とした。

(2) 撤付
1) 底部鏡板