「ふげん」燃料集合体の強制振動試験

横村武宣・林清純

1．まえがき
新型転換用「ふげん」用燃料集合体の炉外評価試験の一として、燃料集合体の強制振動実験を実施してきたので、その概要について報告する。
燃料集合体の設計に当たり、振動の面より考慮を払わねばならない問題として、
1) 冷却材の流動による燃料素子（以下燃料棒と略称する）の振動
2) 地震時の外力による燃料集合体の振動
3) 燃料輸送（取扱い）時の振動衝撃など考えられた。
このうち、燃料輸送（取扱い）時の振動衝撃については、別に輸送容器の開発試験が行われているので、この報告からは除外することとする。
冷却材の流動による燃料棒の振動についてはコンポーネント・テスト・ループ（C T L）での流動試験並びに振動計測が行われており、地震時の外力による振動については、各種の地震波による振動解析ならびに耐震試験が行われている。
空気中での強制振動実験は、燃料集合体の設計ならびに安全性の評価に資するとともに、これらの炉外評価試験に向けて、燃料集合体の資料を提供することに、これらの試験の結果をもとにした強制外力の振動実験を行い、その妥当性の評価に資することなどをねらいとして実施しているものであり、その内容は次の項目よりなっている。

燃料棒の振動特性を調べる実験
燃料棒の支持条件を調べる実験
燃料集合体の振動特性を調べる実験
燃料集合体の圧力管内でのふるまいを調べる実験
燃料集合体の振動発生および損し振動特性を調べる実験

振動実験は、昭和44年度に、船舶技術研究所所有の振動台を用い、予備的な実験を行った。45年度以降、同所内に専用の試験機を設置して実験を実施してきた。

2．実験装置および供試体

2-1．実験装置
実験装置は水平加振用の振動試験機、圧力振動用の試験機および計測器類よりなり、燃料集合体の各種の振動特性を調べることができる。
水平振動試験機は、燃料集合体に強制的なサイン波の振動を加え、供試体の振動特性を調べる動定電流の振動試験機であり、流体に取入れられた電子回路、コンクリート基礎に固定された3台の振動子、油圧浮上式の水平テーブルおよび各種の水平加振治具類よりなっている。

水平振動試験機の主要項目は次の通りである。

1) 振動形式
2) 圧力

- 200kg・G × 2台
- 400kg・G

4) 振動源

- 40mm P－P

6) 振動数

- 0.5 ～ 200 Hz
- 定加速度または定振巾制御
「ふげん」燃料集合体の強制振動試験

写真1 試験装置全景

対数挿引または直線挿引

7) 挿引速度
挿引振動数0.1〜100min

試験装置の全景および燃料集合体を試験機に
取付けた状態を写真1および写真2に示す。

撮り振動試験機は、燃料集合体に強制的な振
り振動を加え、供試体の挿り振動特性を調べる
動電型の挿り振動試験機であり、挿り振動子、
励磁電源、挿り加振治具および駆動用電子回路
よりなっている。

挿り振動試験機の主要目は次の通りである。
1)振動形式 動電型
2)振動トルク 6 kg・m
3)最大角加速度 2,000 rad/s²
4)最大回転角 ±22°
5)使用振動数 0.5〜200 Hz
6)挿動数挿引 定角加速度または定回転角
対数挿引または直線挿引

写真2 挿動試験機に燃料集合体を取付けた状態

7) 挿引速度
挿引振動数0.1〜100min

計測器類は、圧電型振動計、トラッキングフ
ィルタ、位相差計、その他より、周波数応
答などの計測記録ができるようになっている。
実験装置のブロック線図を図1に示す。

2.2 供試燃料集合体

「ふげん」用標準燃料集合体は、28本の燃料
棒よりなり、内層、中間層および外層におお

図1 挿動試験装置ブロック線図

動力炉指令No14 1975.5
表Ⅰ 供試燃料集合体の特徴

<table>
<thead>
<tr>
<th>実施年度</th>
<th>燃料集合体</th>
<th>ベンチ試験</th>
<th>スペーサ数</th>
<th>スペーサの特徴 (中央部)</th>
<th>スペーサの特徴</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>第1次試作 1F型</td>
<td>SUS-27</td>
<td>リング型</td>
<td>9</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>1F型</td>
<td>SUS-27</td>
<td>ツイストスター型</td>
<td>9</td>
<td>436</td>
</tr>
<tr>
<td>45</td>
<td>第2次試作 2F型</td>
<td>UO₂</td>
<td>リング型</td>
<td>9</td>
<td>412</td>
</tr>
<tr>
<td></td>
<td>2F型</td>
<td>UO₂</td>
<td>摩耗バッド型</td>
<td>9</td>
<td>419</td>
</tr>
<tr>
<td>46</td>
<td>第3次試作 3F型</td>
<td>UO₂</td>
<td>リング型</td>
<td>9</td>
<td>412</td>
</tr>
<tr>
<td></td>
<td>3F型</td>
<td>UO₂</td>
<td>リング型</td>
<td>9</td>
<td>420</td>
</tr>
<tr>
<td>47</td>
<td>第4次試作 4F型</td>
<td>UO₂</td>
<td>リング型</td>
<td>9</td>
<td>412</td>
</tr>
<tr>
<td></td>
<td>4F型</td>
<td>UO₂</td>
<td>リング型</td>
<td>9</td>
<td>420</td>
</tr>
<tr>
<td>48</td>
<td>第5次試作 5F型</td>
<td>SUS-27</td>
<td>リング型</td>
<td>9</td>
<td>420</td>
</tr>
<tr>
<td>49</td>
<td>第6次試作 6F型</td>
<td>W-Cu</td>
<td>リング型</td>
<td>12</td>
<td>260</td>
</tr>
</tbody>
</table>

の4本、8本および16本の燃料棒が配置されている。燃料集合体は、上・下タイプレートおよび中央のスペーサに燃料棒に施された間隔が保持され、中央層の8本の燃料棒（タイシロッド燃料棒）により固結し、組立てられている。スペーサ相互の間隔は4本のスペーサを用いた端部に応じた形状寸法で保持されている。圧力管内での燃料集合体の重量はコロント・パレットで支持され、縦方向の位置決めは上・下タイプレートの側面に取付けられた案内軸で行われる。

燃料集合体の主要目的は次の通りである。

- 燃料集合体の全重量: 約230kg
- 燃料集合体の全長: 4388mm
- 燃料集合体の外部(スペーサ): 116.7mm
- 燃料材質: UO₂ペレット
- 燃料被覆管材質: ジルカロイ-2

燃料被覆管外径: 16.46mm
燃料有効長: 3700mm
燃料棒本数(集合体当り): 28本

実験に供した燃料集合体は、合計11体で、その中にはZr-2被覆管に天然ウラニウムUO₂ペレットを詰めた実燃料棒による燃料集合体およびZr-2被覆管に、SUS-27またはW-Cuペレットを詰めた模擬燃料棒を組立てたものがあり、さらに、開発の過程に応じて、スペーサ数9ヶのものおよび12ヶのものがある。

「ふげや」燃料集合体の測定図および供試燃料集合体の特徴を図2および表1に示す。なおこの実験で用いた供試体の呼び名は、スペーサの形状、製作法などにより区別した本実験のための記号である。

3. 実験結果

| 機能解析報告No14 | 1975.5 |
3.1 燃料棒の振動特性
燃料棒の振動特性を調べる実験では、燃料集合体を適当に立てた状態で、上・下タイプレート、各スペーサーを水平加振治具に固定し、上・下2台の振動子により、治具を水平に加振する。代表的な燃料棒として2本の燃料棒を選び、そのの、水平面上の2方向にわせて加振できるよう、毎回、集合体の向きを変えて実験を行った。

振動の計測は、計測すべきとする燃料棒の加速度と、その上・下にあるスペーサーの加速度を計測し、トラッキングフィルタおよび位相計を介して、振引周波数成分のみについての、燃料棒の周波数応答を求める方法をとった。

表2 燃料棒の共振振動数および支持条件

<table>
<thead>
<tr>
<th>スペーサ位置</th>
<th>燃料棒数</th>
<th>振動数 (kHz)</th>
<th>支持条件</th>
<th>aL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 F</td>
<td>400</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>1 S</td>
<td>436</td>
<td>8.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>2 F</td>
<td>412</td>
<td>1.1</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>2 S</td>
<td>419</td>
<td>9.0</td>
<td>-3.0</td>
<td></td>
</tr>
<tr>
<td>3 F</td>
<td>412</td>
<td>97〜150</td>
<td>115〜120</td>
<td></td>
</tr>
<tr>
<td>3 S</td>
<td>420</td>
<td>108〜112</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>4 F</td>
<td>412</td>
<td>1.05</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4 S</td>
<td>420</td>
<td>9.6</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5 F</td>
<td>260</td>
<td>2.0</td>
<td>3.2〜4.6</td>
<td></td>
</tr>
<tr>
<td>3 特</td>
<td>420</td>
<td>100〜105</td>
<td>-3.0</td>
<td></td>
</tr>
<tr>
<td>4 特</td>
<td>260</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

(注) 1 SUS-304, W-0ベレットあり棒燃料棒の値はUO2ベレットに換算
2 ディンプルと振動方向の関係により異なる。

図3 燃料棒の周波数応答

典型的な周波数応答の記録例を図3に示す。同図において、測定は振動数領域で0.01〜0.1の振動数二次表象の系について、周波数応答の計算値を示したものである。周波数応答曲線には、このような典型的な形で、1つのピークを持つもののほか、相関がスパン内の変化との関連で、2つまたは3つのピークに分かれているもののがかなり多い。

燃料集団体の上・下端などを除き、スペーサーが等間隔で配置されているときの共振振動数は表2の通りである。

「ふげん」用標準燃料集合体F型の燃料棒は32のスペーサで支持されており、共振振動数は4次第試験までの9つのスペーサのものに比較して、かけは、230〜280Hzにある。

振動加速度の大小による周波数応答の変化を調べるため、0.05〜0.6Gの範囲で、振動加速度をパラメータとした実験を行った結果、共振振動数、最大利得とともに顕著な変化はなく、燃料棒は極性の振動系であると言ってよいことがわかった。

3.2 燃料棒の支持条件

振動数の特性を手軽に求める方法として、一般に減衰振動波形を記録し、その周期、対数減衰率などを算出する方法が用いられる。この実験では機械法による燃料棒の減衰振動波形の記録を行った。しかし、大部分の供試体について、実数を求めるに足るような、規則的振動波形を得ることができなかった。そこで、静的荷重試験により燃料棒の支持条件を求め、支持条件より固有振動数を算出する方法を試みた。

この方法は、中村集中荷重に対する棒の曲げ応力とスペーサの支持条件の関係式より、曲げ応力がゼロとなる点までの距離xとaLの関係式を導出し、実測したx/aLよりaL値を算出する方法である。

亜メタリを用いて計測した応力分布の1例を図4に示す。各供試体について得られた平均のaL値（上・下端部を除く）は表2の通りである。

燃料棒が多数のスペーサで支持されている場合、スペーサの支持条件が見かけ上大きくなる。そこで、スペーサ数の増加にともない、支持条件が見かけ上どのように変化するかを調べた。
図4 中央集中荷重による燃料棒の応力分布（5F型）

図5 支持点数と支持条件の関係

の結果を図5に示す。同図において、点線はスペースによる弾性支持の場合を示し、実線は刃型のVブロックによる単純支持（aL=0）の場合を示す。両者とも、支持数が4でaL>3となる、4点単純支持の集中荷重に対するaLの計算値と実験値で一致している。また、同図により、6点以上では、支持点の増加によるaLの向上は余り期待できないことがわかる。

両端をスペースで弾性支持されている燃料棒の固有振動数f₀は、スペースの支持条件aLが既知であれば、次式により求めることができる。

\[f₀ = \frac{(\beta L)^2}{2\pi^2} \sqrt{\frac{E I}{\rho A}} \]

\[aL = \frac{\delta L}{\tan^2 \frac{\beta L}{2} + \tanh^2 \frac{\beta L}{2}} \]

ここで、E、I、ρ、AおよびLは燃料棒の軸弾性係数、断面二次モーメント、密度、断面

動力炉技術 1975. 5
図6 燃料集合体の周波数応答（5F型）
（注）燃料体の上下S0、S13を0.2Gの水平加速度で
加振。燃料体中央部スベサS6の周波数応答を示す。積みおよび振幅を示す。
この方法により算出した固有振動数は、周波数応答より求めた共振振動数と良い一致を示し
た。

3.3 燃料集合体の振動特性
燃料集合体の周波数応答を調べる実験は、燃料集合体の重量をワイアーロープで上部より懸
架支持し、燃料集合体の上、下タイプレートを
振動子で直接加振して行った。燃料集合体のほ
ば中央部にあるスベサ（S6）の点での応

図7 燃料集合体の高次共振
答を図6に示す。同図において、1次共振点
は約2Hzにあり、さらに3次以上の奇数次の高
次共振が規則正しく現われているのがわかる。
試験の結果得られた高次共振の振動数は図7に
示す通りである。同図において、5次試作集合

図8 压力管および燃料体スベサの加速度

動力試験No14 1975. 5
体および特殊燃料集合体は、スペーサ数の増加および照射試片ホルダの剛性により、他のものより基本振動数が高くなることがわかる。

これらのグラフより、燃料集合体の高次共振振動数は、基本振動数より、次式で求められる。

\[f_n = f_1 (n + 1/2)\pi \]

地震時の燃料集合体の挙動を把握するための実験は、燃料集合体を圧力管に挿入し、重量をコレット機構で支持し、地震外力に相当する加速度で圧力管の上、下端を加振して行った。

圧力管の振れは約9 Hzおよび約27 Hzにピークがあり、約13 Hzにノッチが観測され、燃料集合体の振れは約9 Hzおよび13 Hzにピークが観測された。約9 Hzおよび約13 Hz共振時の圧力管および燃料集合体の加速度は図8の通りである。

燃料棒が圧力管に対して、どのような相対運動

![図3 压力管内の燃料集合体の振動計測](image)

![図9 燃料集合体の振れ特性(5F型)](image)
動を行うのかを調べるため、非接触型の振動変位計を圧力管に取付け、燃料棒の変位量を計測した。振動数を5〜13Hzの範囲に制限し、振動加速度0.5G、1.0Gおよび1.5Gの3ケースについて行った実験の結果、相対変位の最大値は1.5G加振時で1.1mmであった。この値は圧力管とスペーサの間隔に対して妥当な値であり、燃料棒の挙動、とりわけ燃料棒が地震時に、その間隔以上の振れで振れるようなことのないことを示している。

圧力管および燃料棒の加速度を検出し、両振動計の振出指示数の差より求めた相対変位、非接触型振動変位計の計測値と良い一致を示さなかった。しかし、その最大値については1.1mmで、前者の指示値と良く一致している。

3.4 燃料集合法の振動変形および振動励振
燃料集合法の振動変形は、かなり小さく、冷却材の横方向成分などにより、炉心内で振れおよび振動を生ずる可能性がある。

振動強さを調べる実験は、直立に立てた燃料集合法の上下タイプレートを固定し、下部タイプレートに振動モーメントを加え、燃料集合法の剛性を調べる実験および燃料集合法を圧力管内挿入し、座標標定機で支持した状態で、下部タイプレートに振動モーメントを加え、炉心中構造物などの摩擦を含めた振動抵抗を調べる実験を実施した。（ただし、冷却水は含まれていない。）

振動モーメントと燃料集合法の振動角の関係を図9に示す。同図において、炉心内の状態を模出したケース（上端フリーゼ）では上・下タイプレートの変位が、スペーサ、コアチップ型間でよい振れが大部分を占め、燃料集合法自体の振れはかなり少ない範囲にとどまっていることがわかる。スペーサの振動抵抗は上端固定の場合に見られるように、上・下端での抵抗に比して大きく、上・下端を除くスペーサの部分での振動角は、全体の約1/2にとどまっている。

5F型燃料集合法の振動変形は約2/N·kg·mで、4F型、4S型の約3/N·kg·mに対して、かなり向上しており、スペーサ数の増加の影響が顕著に表われている。

挿り振動の周波数応答は、挿り剛性試験時の支持方法と同一のケースについて実験した。燃料集合法の挿り共振は10〜15Hzにあり、圧力管内での挿り共振には共振点での顕著なピークが表われなかった。

4.まとめ
1次試作より5次試作までの燃料集合法について、その挿動特性を調べる実験を行い、その結果はその後次の設計・試作に反映された。

この実験により得られた主な結論および5次試作燃料集合法についての結果は、次の通りである。

1）燃料棒の振動特性
- 燃料棒の支持条件aLは単純支持の値に近く、見かけ上、上・下端部でaL=0、スペーサ部でaL=3〜4である。
- 多数のスペーサにより弾性支持された燃料棒の見かけ上の支持条件aLは、両端支持の場合のaL値が大きく、aL>3である。
- 燃料棒の固有振動数は求められた。また、aLの実測値より求めた固有振動数は、実測した固有振動数と良い一致を示した。

4）燃料棒の振動減衰率を求められ、周波数応答は振動特性二次要素の系で近似できることがわかった。

2）燃料集合法の振動特性
- 燃料集合法の固有振動数および高次共振振動数が実測され、高次共振と基本振動数との関係を求めた。

3）地殻外力に想定した1.5Gまでの振動加速度に対し、圧力管と燃料棒の相対変位の最大値は設計予想値の範囲内にあることを確認した。

3）燃料集合法の振動特性
- 燃料集合法の振動剛性は、スペーサ数を9から12に増加したことにより、かなり改善された。

2）燃料集合法の振動剛性は、半径ばねと圧
力管の滑り摩擦抵抗に対して、かなり大きく、加えられた静的揺り力は、集合体全体の回転により吸収される。

3）燃料集合体の揺り振動に対する周波数応答を得た。圧力管内での燃料集合体の周波数応答は揺動性二次要素の系のものに近い。以上の長期間にわたり一連の試験研究により燃料集合体の挙動特性が解明され、その成果は設計ならびに健全性の評価に活用されたが、その間、協力を頂いた原子燃料工業関係者、東海事業所検査開発課、および大洗工学センター一部品機器試験室（CTL）の関係者諸氏に謝意を表する。