日米FBR協力協定にもとづく
ワーキンググループの活動

高速増殖炉開発本部

1. 緒言および経過

日米FBR協力協定は、1969年3月4日に日米国AECと調和の円に締結され、それ以来、協力分野として原子力、燃料材、ナトリウム技術、安全性の4分野にわたって情報交換、専門者会議を通じて、密接な協力をしてきた。

1974年「常陽」の建設が着工を越した後、わが国は高速炉プラントの建設運転実験とコンポーネントの開発を交換対象とすることを提案、米国側も原則的了解をしたが1年間ほど内容の限定を行った。当時米国AECはERDAとNRCへの改組の気運にあり、そのため改組後1976年1月にERDAから合意書提示があり、3月日本はそれに調印した。
この1月の提示にさい、ERDAはJoint ERDA／PNC Coordinating Committee（ERDA／PNC合同調整委員会）を設けることを提案してき、これらの協力は技術交換の全体を管理するもので、第1回目にはそのあとに行うべき会議の構成、任務、手配の検討を行い、これにより日米間の協力遂行するにあたり、いまだあまり明確でなかった協力計画に対するトップレベルの方向づけ、促進、性格づけに大きな指針を与えるものであった。

第1回の日米合同調整委員会は、1976年6月28日より7月2日にわたり東京で開かれ、米国側の原子力炉開発実証部のE. Beckjord部長、国立研究所所長やメカ社長、在日大使館など合計5人が委員として来日され、日本側も動燃、原子力局、メカ社など合計7人が委員として出席した。

この合同調整委員会において協力の各分野すなわち、原子力、安全、燃料材、Na技術と、新たに加わったプラント経験とコンポーネント開発について双方から活動の推進と今後の協力計画を説明し合った。その後も、協力された内容をもとに専門分野ごとに、より一層の協力の推進をあわせて4つの分野すなわち安全、燃料材、プラント経験、コンポーネント（ただしNa技術と計算制御を含む）についてワーキンググループを設けることが合意された。炉物理については別途、大型の臨界実験を共通ですすめることで相談をすすめているので、いま、すぐにすくワーキンググループを作成する必要はないと考えた。

ワーキンググループの置き換えの構想としては、まずある6人程度の専門家メンバーを出し合い、(1)その分野に関する見解の交換、(2)開発あるいは解決し、なければならぬ問題、(3)そのための施設、(4)上記にもとづき共同研究、会議、人の派遣、文献の交換などで合同調整委員会に勧告（Recommend）すべき項目をまとめるというものである。

この基本構想にしたがって4つれのワーキンググループの日程および大体の構想にしたがって開催されることになった。

開催にあたり開催場所は日米交互とし、開催国側が2ヶ月前に招待状および議事次第（案）を送るという合意もできた。
以下にそれぞれのワーキンググループの第1回会合について述べる。

2. 原子核燃料開発本部

2.1 原料

* マクルハ・核燃料開発事業団高速増殖炉開発本部
第1回燃料ワーキング・グループは、51年11月1日から11月9日まで本社で開催された。11月5日～6日には東郵、大廈地区の見学会が行われ、5日は原研東海研の高圧電子顕微鏡、乾式再処理研究室、動模東海事業所の再処理施設、プルトニウム燃料部の第1、2開発室などを訪問し、6日は大廃機械センターにおいて製品に関連の「常陽」、MMF、FMF、安全性試験室、ナトリウム温度関係施設を見学後、原研大廃機のプルトニウム研究室を訪問した。

2.2 出席者

米国側
J. A. LEARY : ERDA (団長)
EVANS : HEDL
E. A. AITKEN : General Electric Co.

日本側
天沼 理 : 動模核燃料本部（室長）
輝松邦彦 : 動模FBR本部
川島俊吉 : 動模FBR本部
石田孝一 : 動模大廃工学センター
武藤 正 : 動模東海事業所
長崎隆雄 : 原研東海核燃料工学部
西村敏三 : 原子燃料工業
であり、その他オブザーバーは連系日数20名出席した。

2.3 協議事項

本ワーキング・グループは、現在の技術内容について論じる会ではなく、技術の交換すべき分野の確認、およびその実施計画について議論すべきことを確認したあと、以下の各項について話し合いを行った。

(1) 燃料の製造
1) 燃料製造施設の現状および将来計画
2) 製造工程－プルトニウムおよび混合燃料物に関連した問題点（たとえばPu－240の問題）
3) 製造設備－機械化、自動化、遠隔化
4) 製造上の問題と対策－混合燃料物燃料ビンの製造について
5) 品質管理
6) セーフガード

7) 将来の日米協力が可能な分野の確認と協力の方法
(2) 燃料開発の観点からみた炉心設計
1) 目標炉心の性能
2) 仮定と制限条件
3) 結論
4) ヘテロジェナス炉心
5) 将来の日米協力が可能な分野の確認と協力の方法
(3) 燃料挙動
1) 要求される燃料挙動
2) 設計および操動コードの応用
3) 燃料開発上の特殊問題
 a) 燃料－被覆材の化学的相互作用
 b) 被覆材損傷にいたるまでの過渡時の挙動
 c) 被覆材の常温耐性
4) 混合燃料物およびプランケット材の挙動
5) 将来の日米協力が可能な分野の確認と協力の方法
(4) 新型燃料の開発
1) 混合燃料物を含む新型燃料開発の展望
2) 新型燃料の性能評価についての現状
3) 将来の日米協力が可能な分野の確認と協力方法
(5) 材料の性質
1) 被覆材およびダクト材（新材料を含む）
 a) ナトリウムとの耐性
 b) 燃料との耐性
 c) 焼結クラックを含む機械的性質
 d) スマリングの模擬試験と中性子照射
 e) 製造
2) 将来の日米協力が可能な分野の確認と協力方法
(6) 燃料集合体技術
1) 新型スパーサ、新型ダクトを含めた設計手法
2) 検査、燃料を含めた炉外試験と解析
3) 径方向プランケットの特殊問題
4) 将来の日米協力が可能な分野の確認と協力の方法

動力核燃料No33 1977. 8
(7) 材料設計ハンドブック
1) 燃料材料設計ハンドブックのまとめ一括
造表を含めた目次
2) 燃料材料学問データバンクのまとめ
3) 将来の日米協力が可能な分野の確立と協
力の方法
4) 国内中性子本測定
(8) 接触料サイクル
1) 高速炉燃料再処理計画
2) プルトニウム転換工程(コンパージョン)
3) 固液物処理と旺盛
4) LMFBR燃料輸送キャスク開発
5) 将来計画の確認
(9) 交流の交流
2.4 結果の要約
今回のワーキング・グループの結果、つぎのよ
ような分野でそれぞれ専門家による作業がすす
められることがなった。
(1) 材料設計ハンドブックに関する専門家会議
1) 目次作成と交換 1976. 12. 31まで
2) 専門家会議 1976年春於 ワシントン
(2) 材料試験用ドニメトリー
1) フラックススライヤの米からの提供
1976. 12. 31
2) 共同研究に関する詳細打合せ
1976. 6. 31
(3) 燃料材料に関する専門家会議
1977. 2. 28～3. 2
1) 燃料ピン挙動解析
2) 技術者の内顔研
3) 計算コードの相互比較
4) 燃料層厚変数の確認照射試験
5) 集合的光照射試験
6) 燃料設計の概念
7) 照射焼燃料の物性値測定法
(4) 手紙による確認事項
1) 燃料製造関係
a) 双方の品質保証計画の比較 1977. 3. 31
b) プルトニウム回収グループ 1977. 2. 28
c) 個人燃焼試験実験 1977. 3. 31
d) 将来の製造方法開発についての
意見交換 1977. 3. 31
2) 燃料集団体関係
a) 余分損失の鉄試変化 1977. 2. 28
b) 冷却材混合効果 1976. 12. 31
3) データバンク
a) 目次関の例 1976. 12. 31
b) 画像解析 1977. 1. 31
4) 燃料輸送キャスク
a) 現状、計画、概念31977. 3. 31
5) 被覆材開発に関するセミナー
a) 専門家会議の予定 1976. 12. 31
b) 同会議のプログラム案 1977. 3. 31
c) 専門家会議 1977. 6
(6) 被覆材の介換
a) 試験計画を示すレター 1976. 12. 31
b) 初覆材200本の交換 1977. 4. 30
(7) 専門家による相互施設の交換訪問
a) プルトニウム燃料製造施設 1977年中
b) ホットラボ 1977年中
(9) レポートの交換
交換を考慮する
(10) 第2回ワーキング・グループ1977・秋
a) PNCからの内容および議題について
b) E R D Aからの出席
1977. 7. 31
b) E R D Aからの出席
1977. 8. 31
2) その他
a) E R D AよりF T F C、R B R燃料
b) 燃料製造に関する専門家会議 1977. 中
(野呂課司)
3. プラント経験ワーキング・グループ
3. 1 概要
1976年6～7月に開催された動燃事業団(P N C)と米国エネルギー研究開発庁(ERDA)間の高速増殖炉合同調整委員会第1回会議の決
定にもとづき、両者間にプラント経験ワーキン
グ・グループが設置され、その第1回会議が
相方の代表団は情報の交換および人の交換について国における設計、建設、運転のスケジュールの相違によって、制約を受けるものではないと理解し合意した。

相方の関心の分野を明確にする補助手段として、PNC、ERDA はそれぞれ相方の関心事項を提出し合い、時間のゆるす範囲で討議した。

その結果つきのよう合意された。

(1) ERDA は、PNC が提出したような方法で質問状を作って1976年12月31日までに PNC に提出する。

PNC はこの質問状を受領してから2ヶ月以内に返答する。

(2) もし PNC がこの会議の結果、ERDA に対して1976年12月31日までに追加質問を出せば、ERDA は2ヶ月以内に返答することに同意した。

(3) PNC は当会議後に次に提出される書類について、その内容について理解するにあたり「英文の要約」をつけることに同意した。

(4) 第2回目のワーキング・グループは、1977年の秋に開かれるLMPBRプラント経験に関するセミナーに引続き、5日間開催することを合意した。（中田喜官二郎）

4. 安全性ワーキング・グループ

4.1 概要

第1回目安全性ワーキング・グループ会合は、1976年12月6・7・8・13日日本で行われ、4日目は大洗工学センター、10日は東海事業所PFR建製作業および日本原子力研究所NSRR施設などの見学にあてられた。

本社での議事次第は、第1日が動燃側の「常陽・もんじゅ」の安全設計思想について述べ、一方ERDA側が、FFTF、CRBRの安全設計思想について述べた。第2日には、動燃・ERDAの間の技術協力R & Dについて概要を述べ、第3・4日に行われた今後の協力範囲・方法について活発な討議を経て、委員会の要請事項をまとめた。

4.2 出席者

米国側：

1976年11月15日から19日にわたって、米国のハーンフォード技術開発研究所（HEDL）と西アルゴンヌ国立研究所（ANL-W）において開かれ、

本会議の目的は、上記調整委員会において合意される、わが国の実験炉「常陽」および原型炉「もんじゅ」と米国の実験炉EBR-II、FFTFおよび原型炉CRBRとの間においてその設計、建設、運転に関する協力につき、その分野および方法などを調査決定し、これを調整委員会に報告することにあった。

会議での調査の結果、情報の交換、人の交換、専門家会議およびセミナーの開催などについて多くの決議が行われ、また当会議の席上でのに多くの情報交換が行われた。

第2回会議は1977年11月12月、日本において開催される予定である。

なお、本会議の範囲外ではあるが、当代表団はこの機会を利用してLMECを訪問し、有意義な情報を得ることができた。

3.2 出席者

米国側

Robert L. Ferguson : FFTF（団長）
Alexander Squire : HEDL
Ronald H. Fillmore : WARD
Dr. William M. Jacobi : WARD
Bernard C. Cerutti : ANL
Anthony V. Campise : ANL

日本側

岡野茂夫：動燃理事（団長）
鈴木順一：動燃FBR本部
野本昭二：動燃大洗工学センター
三輪幸雄：動燃大洗工学センター
堀内昭雄：動燃計画管理部
小田島嘉一郎：動燃FBR本部

3.3 結果の要約

相方ともに今回の会議は大いに建設的なものであり、胸かかれた意見の交換が行われた。

相方ともに共通の関心分野が明確にされ、"Coordinating Committee"によって認められた情報および人の交換を念願に遂行することに同意した。
技術資料

J. D. Griffith : ERDA－RDD (巡長)
A. C. Millunzi : ERDA－RDD
R. Avery : ANL－RAS
D. E. Simpson : HEDL
W. W. Hennoch : 米国大使館

日本側：
川口修 : 動燃FBR本部（巡長）
能公正雄 : 日本原子力研究所
三木保秀 : 動燃FBR本部
川島和 : 動燃FBR本部
渡辺章 : 動燃FBR本部

なお、12月8日と13日は、ワーキンググループの上部機関である合同調査委員会委員としてFBR本部の望月喜一郎技術G.Lが出席した。事務局を除き、FBR本部・大洗工学センター・メーカー各社から延べ35名の出席があった。

4.3 安全性の範囲
(1) 実験炉、原型炉の重点安全問題の摘出と、
2団円での整理
(2) 炉内試験（事故、全炉心事故）および解析
(3) 炉外試験（事故、全炉心事故）および解析
(4) 耐震試験および解析
(5) 耐震試験および解析
(7) エアロゾールNa火災およびFP騒動試験
および解析

(1) ERDAから、高速炉安全性炉内試験の重要性にかんがみ、動燃の協力要求があり動燃は検討を約束した。
(2) CRBRおよび「もんじゅ」間で安全設計思想などにつき、できる限り情報交換をする必要があることに合意した。
(3) 1978年4月26日からの連（後日同月9月19日からの連に変更）にシナロールで日米高速開全性委員会を開催することに合意した。

5. コンポーネント・ワーキング・グループ

5.1 概要
コンポーネント・ワーキング・グループ（Joint Working Group of Plant Components）の正式名称は、52年6月6日から15日まで動燃
事業団の本社で開催された。この開発工学センター、日本原子力研究所、動力事業団のエネルギー工場のほか、日本、三菱重工、三菱原子力、東芝の高速増殖炉関係の試験施設を視察した。

このワークショップの会議の目的は、
(1) 「常陽」「もんじゅ」、FFTP、CRBRなどの主要機器の情報交換。
(2) 研究、開発についてのレビューや、
(3) ナトリウム技術、計測制御、プラント設計、システム設計、規格と基準についての相談に有用な協力方法を検討し合う。

このような活動を含むコンポーネント・ワークショップグループの活動としては、主に熱と流れの性能に対する解析と試験、管と管的支持部の摩耗、ナトリウム、水反応試験、ナトリウムのリーコク検査などを含む。

5.2 出席者
米国側
J. J. Morabito : ERDA（団長）
J. Nagamatsu : LMEC
S. A. Weber : HEDL
F. Tippets : GE
W. R. Simmons : ANL

日本側
三木良平：電気FBR開発本部（団長）
中井 純：同上
安部重二：同上
望月恵一：同上
三本保也：同上
斎藤敏夫：同上
田中篤二：同上
小杉久夫：同上

5.3 討論事項
この会議では、日本側から「常陽」「もんじゅ」のコンポーネントの開発状況、ナトリウム技術と計測制御の研究開発状況、以上に携わるメカニシズムの分析状況、「常陽」「もんじゅ」の現状、その他個別の項をもじりとして、配管の腐食やナトリウムの漏れ、供用期間中の検査、蒸気発生器とナトリウム、水反応試験、制御棒駆動装置、ナトリウムとカバーガス中の検

5.4 結果の要約
今後のコンポーネント・ワークショップの活動としては、そのことを取りまとめた。

(1) セッション
1）蒸気発生器とナトリウム・水反応試験
場所 日本
時期 1978年2月
議題 蒸気発生器の伝熱管の工作と検査
管と管板の溶接
熱と流れの性能に対する解析と試験
管と支持部の摩擦
ナトリウム、水反応試験
ナトリウムのリーコク検査
将来計画

2）コンポーネント
場所 LMEC
時期 1977年12月
議題 セッション1
一次、二次冷却系用ポンプの設計、
試験、軸受試験
制御棒駆動装置（バーを含む）

セッション2
空冷冷却器
中間熱交換器
補助炉冷却器

セッション3
原子炉容器と炉内構造物
燃料交換機
炉心上部機構
炉心クランピング機構
機械的（インテグレーテ）アルゴン、ガス、シール

3）ナトリウム技術と計測制御
場所 アメリカ
時期 1978年6月

設計条件、ナトリウムが流れたときの考え方、ナトリウム火災の解析、ライナーの図面などを1977年8月に交換することになった。

2) 使用すみ燃料の取扱設備

「もんじゅ」FFTF、CRBRの使用すみ燃料のプラント内での取扱設備についての設計諸元、設計条件などについての情報を1977年
8月に交換することになった。

(5) その他

1) 必要に応じてこのワーキング・グループの団体専門家が得られた場合には試験の立合い、設計の調査などに専門家がお互いに
訪問できることになった。

2) 情報交換の範囲はEBR－II、FFTF、C

RBR、「常隆」「もんじゅ」に限定するもの
となく、つけの実証炉についてもお互いに
その範囲を広げることに合意した。

(6) 第2回コンポーネント・ワーキング・グループ

場所 アメリカ
時間 1978年8月

(中井 俊)

6. 結論

以上、日本FBR協力協定のもとでワーキング・グループの第1回の状況を述べた。

現在米国はFBR開発についてはある程度

の進捗があるようでも見られているが、少なくとも

研究開発についてはますます力強さに発展させ、わが国との協力を密にしていこうという姿勢が

うかがえる。わが国も緊密な国際協力を得て、

FBR開発という大切な仕事を完成していきた

いと考える。

(望月武一)