せ持ったものである。
(3) 燃料切り離し装置（SM）
 本装置は、燃料交換機が燃料をつけた状態
 を切内で移送し、燃料交換機グリップを所
 定の場所に位置決めする機能
 a) モーター駆動の回転を連動して炉心構成要素
 を切内で移動し、燃料交換機グリップを所
 定の場所に位置決めする機能
 b) 炉心構成要素を斜めに挿入する機能
 c) 炉心構成要素 1 体を吊上げ、挿入する機能
 d) 炉心部から炉心構成要素を吊上げげる際に、
 回転の炉心構成要素の浮上を防ぐ機能
 で、切り離し困難になった場合を想定して、グ
リップが傾くと組合せしガソリンカプを引き上げ強
制的にグリップを閉じさせるためのものである。
この燃料切り離し装置は、パンタグラフ機能が折りたためなくなり、燃料交換機の引
抜きが困難な作業となることから、特に燃料切
リ離し装置が重要である。

3. 試験装置概要

3.1 ナトリウム試験装置
 「もんじゅ」用として試作された燃料交換機
 のナトリウム中試験装置は、図 3 に示すおり
 大別して試験容器のナトリウムを循環する主働

<table>
<thead>
<tr>
<th>項目</th>
<th>燃料交換機本体</th>
<th>回転ハングリング</th>
<th>回転装置</th>
<th>切り離し装置</th>
</tr>
</thead>
<tbody>
<tr>
<td>全長</td>
<td>最長：30200mm</td>
<td>11800mm (駆動部含む)</td>
<td>押入時：33299mm (ボン径含む)</td>
<td>9213mm</td>
</tr>
<tr>
<td>外径</td>
<td>ケーシング：1380mm</td>
<td>640mm</td>
<td>ケーシング：700mm</td>
<td>114.3mm</td>
</tr>
<tr>
<td></td>
<td>上下動装置：350mm</td>
<td></td>
<td>上下動装置：267.4mm</td>
<td></td>
</tr>
<tr>
<td>駆動方式</td>
<td>モーター駆動・ウィヤーポット巻取ドラム</td>
<td>パワーシリンダ駆動 (2台)</td>
<td>モーター駆動</td>
<td>手動装置 (ボルトナット方式)</td>
</tr>
<tr>
<td>ストローク</td>
<td>取り：4295mm</td>
<td>50mm</td>
<td>取り：14970mm</td>
<td>80mm</td>
</tr>
<tr>
<td>駆動速度</td>
<td>3m/0.3m/min</td>
<td>0.2m/min</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>駆動力</td>
<td>射入・引抜力：1t</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>同軸機械</td>
<td>-</td>
<td>パンタ盤圧；モーター駆動</td>
<td>回転駆動；パワーシリング</td>
<td>-</td>
</tr>
<tr>
<td>パンタ開閉機構</td>
<td>モーター駆動</td>
<td>ストローク：1385mm</td>
<td>装置速度：1/0.1rpm</td>
<td>-</td>
</tr>
<tr>
<td>許容偏心量</td>
<td>±20mm</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>機械重量</td>
<td>約35t</td>
<td>-</td>
<td>約15t</td>
<td>-</td>
</tr>
</tbody>
</table>

動力試験結果 1980.3
環系、系統のナトリウムを精製する精製系、主循環系とダンプタンクを結ぶ供給排出系およびガス系で構成される。

循環流量は最大1450ℓ/min、ナトリウム温度は最高540℃で実装条件を満たしている。精製系は、強制空冷式密閉型のコールドトラップと可変オリフィス式空冷型のブラギング計からなり、溶存酸素換算で10ppm以下のナトリウム純度を保持できるようになっている。ガス系は－1～0.9kg/cm²Gまでの加圧と真空引きが可能である。試験容器内部には、図4に示すとおり容器内部（実寸大燃料集合体19本）、貯蔵ラック（6本）、模擬ボット（1本）があり、燃料交換機を俯け所定の試験が行えるようになっている。なお、本装置の特徴としてダンプタンクが床下にあり、試験容器が床下（ピット内）に収納されている。ナトリウム量は約71.3tである。

3.2 洗浄装置

本装置は燃料交換機のナトリウム中試験終了後、付着したナトリウムをアルコールで洗浄して除去するもので、図5に示すように洗浄タンクのアルコールを循環する循環系、アルコール中の不純物（主に固形物）を捕集するフィルターおよび循環系とアルコールタンク（またはアルコール廃液タンク）を結ぶ供給、排出系とガス系で構成される。

循環流量は最大20ℓ/min、アルコール量は約2340ℓで変性アルコールを使用している。洗浄装置は、電導度計測で常時行い洗浄完了の確認を行う。ガス系は－1～1.8kg/cm²Gまでの加圧と真空引きが可能である。洗浄中に反応生成される水蒸気ガスは、フレームアレスタを通して窒素ガスで希釈したのち大気放出される。

また、洗浄効果を促進させるために蒸留バブル操作が可能である。

4. 工程

燃料交換機および燃料回収装置は、昭和49年に製作を完了し、引き続き製造ノーカーネューケア工場内
図3 燃料交換樹内トリウム中試験装置

5. 試験項目とその結果

一連の開発試験につき今までに得られた主な
成果を次に記述する。トリウム中試験の場合、
試験条件は各試験の目的により変化させた場合
もあるが、おおむねトリウム温度を200℃、トリ
ウム濃度をプラランゲイン温度で150℃前後、循
環トリウム流量を1260ℓ/分、カバーガス圧
力は100～400mmAqの条件下で行われた。

5.1 機能試験

(1) 位置決め精度の確認試験

炉内におけるグリッパの位置を決定するための
回転プラランゲイン動作およびハンドリングヘッド
動作について、その停止精度をみると大
気中試験時の停止精度と大差なく、設計値0.1
度を満足していることが確認された。また、燃
料とグリッパとの相対的な位置ずれを調査する
ために、燃料上に座標を仮定し計算によってグ
リッパを把握し、実際の位置でハンド
リングヘッド内にグリッパを挿入し、挿入でき
試験容器平面図（A-A'矢視）

（2）燃料挿入、引抜き試験

試験容器挿入引抜き試験が、正常燃料および30mm、35mm曲げ燃料を用いて行われた。ここで曲げ燃料とは、正常燃料に対しスエリングを模擬した形状の燃料であり、燃料体中心軸から燃料頂部の中心がそれぞれ30mm、35mmずれているなめらかな曲がり方をした燃料である。結果はきわめて良好であり、上下荷重の増加もしくは燃料の重量（200kg）分だけであった。また正常燃料と曲げ燃料との取扱い上の差は認められなかった。

（3）偏心動作試験

グリッパと燃料とが位置ずれをおこした場合
に燃料取扱いができるかどうかを確認する試験であり、正常燃料および35mm湾曲燃料を用いて行われた。ここでは設計偏心量±20mmを与えても何ら問題なく取扱いのできることが分かった。また正常燃料と湾曲燃料による差は認められなかった。

4) セルフオレインジェーション試験

炉心から燃料を引き抜いた場合、当然そこには六角形の穴が残るが、次の燃料の挿入角度がずれていても事故されるようにする必要がある。
ル。セルフオリエンテーション試験は、このために行うので火と燃料との相対的な角度を変える（図転角は燃料回転装置によって与えられる）。燃料に設けられたセルフオリエンテーション機構がうまく機能するかどうかを確認する試験で、正規燃料および30mm、35mm湾曲燃料を用いて行われた。ヘッドリングヘッド部の機構の形状は六角形の一側を横から見た場合ア型をしているところから、30度分について試験すれば良く、結果は15度のセルフオリエンテーション角度ではいずれもスムーズに回転して良好であった。

しかし30度の角度を与えるとキーがア型機構の頂部に乗ってしまい、または頂部からわずかに外れても隣りのキーが反対方向の回転をする斜面に乗ってしまい（燃料同士の間にギャップがかり、穴の六角の方が大きいため、ギャップを無視して作図したような理想的な回転はしない）、挿入時のタイミングによってはうまく回転しないケースもしばしば生じた。この他、燃料設計担当者アイデアを出し合う結果、六角の一側を横から見た場合に型をした形状の機構（キー側も改良されている）も考案された。これはメーカー工場で実施した大気中試験では良い結果を得たが、ナトリウム中ではなお30〜45度の範囲でうまく回転しないケースがあっ、結果大気中でうまくいったところから、外周燃料の数の違いや、グリッパガイド方式の相違等、試験装置の違いが影響するとのようの結論に至った。しかし、セルフオリエンテーション不可の角度があるにもして、一度引抜いて再び挿入すればセルフオリエンテーションすることが明らかとなった。

(3) NAトリウム流れの影響調査

ナトリウムの流れが燃料交換機の動作や停止位置精度に影響を与えるかどうかを確認したので、循環ナトリウム流量が1200ℓ/minの場合と0の場合とでそれぞれ燃料取扱い動作を行ったが、同年内にはナトリウムの流れは燃料交換機の動作および精度に影響を与えることなかった。

(6) 温度特性試験

実機の燃料交換温度が決定されていなかったため、予想されるナトリウム温度の範囲でそれぞれ燃料取扱い動作を行い、影響の有無を確認した。試験は150℃から280℃の範囲で行き、熱膨張差で生じる燃料とグリッパとの相対的な位置ずれが発生した場合は、各機構の動作に顕著な変化はみられず、正常に燃料取扱い動作が行えた。なお位置ずれは問題となるほどの量ではなかったが、一応常を修正して、温度0℃で試験された。

以上の試験を通じて、燃料交換機および燃料回転装置の基本的な性能が確認された。これは当初燃料交換機および燃料回転装置に期待した性能を十分に満足するものであった。一方着手改善すべき点もつきつつ、その一つとしてリミットスイッチの追加の問題が挙げられる。たとえばグリッパ先端に設けている感知機構の信号は、回転プラグの上までロッドで機械的に伝達されたあと、初めてリミットスイッチにより電気信号に変換される。この時スイッチのオンOFF感度が良すぎると、ロッドの微妙なたわみなどによっても簡単に信号が流れてしまう。

結局モックアップでは対応の大きいリミットスイッチに交換された。またバングラフアームの開閉機構にはロッドの伸び差を吸収する装置が必要であるとのことであった。これは伝達距離の長さか他機構と異なり、ナトリウム温度が変えると熱膨張差が生じてしまうという現象である。制御盤上に設置された温度によって変わるという連続的なテクニックでも追加することも可能ですあるか明確な解決策ではなく、実機では伸び差吸収装置が考案されている。その他、シール機構に不具合のあることがわかり、その後シール機構開発試験へと発展した。時おり実施した洗浄、分解点検の結果からは、特にグリッパ内部が十分に洗浄できないことがわかり、付着するナトリウムを減らす目的で積極的に洗浄およびギャップを設けたマークIIグリッパが製作され、単独洗浄試験が実施された。

5.2 耐久試験

実機の燃料交換モードを模倣した燃料交換モードで1000サイクルの耐久性が確認された。これには実機の4.25年分の燃料取扱い本数になり、
期間中各機関の特性にも顕著な変化は認められず、外見に支障があることが確認された。1000サイクルのうち約350サイクルは、マークIIグリッパを使用して消化された。途中で発生のトラブルにより燃料交換機の停止不良があったが、本体への損傷はなかった。電気系保護回路の故障は、発電機では十分対策し得るものであるが、接点調整、タイミング、それに柔軟な多重性などには十分に配慮する必要がある。燃焼回転装置の回転動作の耐久試験は10,000サイクル行われ、その耐久性が確認された。

5.3 洗浄試験
燃料交換を円滑に行うためには、使用期間中の汚染は重要である。グリッパの洗浄性能を増すため、従来方法や技術に則った洗浄技術を採用すると、付着したナトリウムのドレン性および洗浄性が大幅に向上することがわかった。まず、燃料交換機の全体洗浄の結果を表4に示すが、その結果、明らかに示されたことは次のとおりである。

(1) 1回の洗浄で除去できたナトリウム量は、1000〜3000グラムであり分解点検時に除去されたナトリウム量を加えると燃料交換機でドレンできずに付着していたナトリウム量は、千数百〜三千数百グラム程度と推定される。

(2) 洗浄終了時に一見きれいに洗浄されたように見えたが、その後の火災中動作品はグリッパ取付分解、感知機構動作品が不正であった。分解点検の結果、マークIIグリッパの内部接続部に未洗浄ナトリウムが数百グラム認められた。グリッパをマークII型に交換した結果、若干動作不良は重いながらもときにか大気中で動いたが、接続部に未洗浄ナトリウムはまともに認められなかった。

またマークIIグリッパ単品を使って洗浄試験を実施した結果、一番良く洗浄できたのはスチール洗浄であり、100%アルコールと20%エタノールのアルコール洗浄とでは顕著な差が認められなかった。いずれの場合でも分解にはネジ部などの微細部の洗浄は不可能であった。

単独洗浄試験の結果を表5に示す。

5.4 省洗浄試験
次期燃料交換までで、燃料交換機に付着したナトリウムを洗浄せずに保管し、そのまま再使用できるかどうかを調査する省洗浄試験が行われ

<table>
<thead>
<tr>
<th>表4 燃料交換機全体洗浄結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>項目</td>
</tr>
<tr>
<td>区別</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>マークIグリッパ</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>マークIIグリッパ</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ナトリウム除去時間(分)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表5 洗浄法</th>
<th>全ての洗浄前後</th>
<th>アルコール洗浄</th>
<th>後の洗浄前後</th>
</tr>
</thead>
<tbody>
<tr>
<td>使用アルコール量(L)</td>
<td>1830</td>
<td>1950</td>
<td>2120</td>
</tr>
<tr>
<td>アルコール</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>グリッパの取り付</td>
<td>1790</td>
<td>1140</td>
<td>1450</td>
</tr>
<tr>
<td>付着阻害</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>付着試験後</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>付着試験結果</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*省洗浄試験のため連続的に洗浄 (S54.11〜S54.11.15)
た。結果の抜粋を表6に示す。試験は通算16回行われ、そのうち14回がマークIIグリッパを使用して行われた。いずれの回も初めの動作が若干重いほかに問題がなかった。保管雰囲気のアルゴンガス中では、大気圧変化を考慮した最大1000mmHg圧下の空気を混入して（7日間保管）、2ヶ月間の保管期間を経ても（混入空気量100mmHg），再使用が可能であった。省洗浄での繰り返し使用回数は13回まで経験したが、その後も連続で再使用できるような良好な状態であった。ITVを使用した炉内観察にも成功している。

5.5 燃料切り離し試験
「もんじゅ」ではグリッパから燃料が切り離

表5 マークIIグリッパ単独洗浄試験結果

<table>
<thead>
<tr>
<th>方法</th>
<th>100%アルコール蒸気洗浄</th>
<th>20%水アルコール蒸気洗浄</th>
<th>スチーム洗浄</th>
</tr>
</thead>
<tbody>
<tr>
<td>付着</td>
<td>ナトリウム量(g)</td>
<td>96</td>
<td>93</td>
</tr>
<tr>
<td>洗浄</td>
<td>ナトリウム量(g)</td>
<td>93</td>
<td>85</td>
</tr>
<tr>
<td>未洗浄</td>
<td>ナトリウム量(g)</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

せなくなったような場合、強制的に切り離せるように燃料切り離し装置が考慮されている。本試験でもこれにより大気中での燃料切り離し試験が実施された。試験のポイントは燃料交換機駆動部からの操作と燃料切り離し装置側からの操作と同時に行う連携プレーにある。燃料切り離し装置側から最大1/2の駆動力を加えられたことが確認され、連携プレーによる操作も3回程度試みるとスムーズに操作できることがわかった。試験の概念を図6に示す。

5.6 シール機構開発試験
当初採用されたシール機構はパッキン方式であり、燃料交換機ナトリウム中試験の過程でリップのたれこぼしが生じた。燃料交換機で使用するシール機構は、径が大きいこと、軸方向にみずほより回転動作もあること、シール性と接続抵抗との相対する要求を満足すること、さらに温度サイクルおよびナトリウム蒸気中にさらされることなどでむずかしい問題が多い。試験はパッキンの縦断面を見た形で表現すると、エア制型から始め、改良型、再びV型、そしてJ型へと進んだ。現在J型が試験されており、それによって大气中ではほぼ満足すべき結果が得られている。なおシール機構開発試験は単独で試験装置が製作され、それによって現在も試験

表6 燃洗浄試験結果（試験）

<table>
<thead>
<tr>
<th>項目</th>
<th>2 (S53.2)</th>
<th>3 (S54.2)</th>
<th>6 (S54.8)</th>
<th>10 (S54.8)</th>
<th>12 (S54.9)</th>
<th>13 (S54.10)</th>
<th>15 (S54.10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>マークI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ナトリウム温度(℃)</td>
<td>200</td>
<td>200</td>
<td>280</td>
<td>200</td>
<td>200</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>混入空気量 (mmHg分圧)</td>
<td>0</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>1000</td>
</tr>
<tr>
<td>保管時間 (d)</td>
<td>65</td>
<td>68</td>
<td>14</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>ワーミングアップ時間(hr)</td>
<td>1.5</td>
<td>2.5</td>
<td>1.5</td>
<td>0.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>動作回数 (回)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>燃料交換動作良</td>
<td>良</td>
<td>良</td>
<td>良</td>
<td>良</td>
<td>良</td>
<td>良</td>
<td>良</td>
</tr>
</tbody>
</table>

（注）ワーミングアップ時間：ナトリウム中挿入してから動かすまでの時間
動作回数：ナトリウムから引き抜くまでにが内で動かした回数
-表示のところは充分動かした。

動力炉技術No33 1980.3
が行われている。シール装置を図8に示す。

6. 特記事項

6.1 回転ハウジング過負荷異常

(1) 経過

大気中試験のあと、試験ループにナトリウムを充填しての流動試験が行われた。その後、昭和50年秋ナトリウム中試験を実施するための事前点検として、常温アルゴンガス中で回転ハウジング単独の動作チェックを行った。その時期、ホールドダウン上昇、旋回動作とも過負荷異常を示し、上昇荷重は大気中の約2倍の値に達した。外部からの点検では原因がつかめず、回転ハウジングを引き抜き分解を行う調査が実施された。

(2) 原因

分解点検の結果、回転ハウジングおよびガイドスリープにわずかに変形が生じており、機械部に軽い線条痕が認められた。回転ハウジング全体では、機械部とガイドスリープ上部および下部の3点輪郭構造であったため、変形による支持力が生じ、過負荷異常を発生したものと考えられた。

(3) 改造および結果

回転ハウジングの中間部軸受の隙間を大きくして振れ止めとし、さらに回転トルクを軽減するとともに駆動力に余裕を増やすなどの改造が行われた。以後、耐久試験途中で回転荷重に若干の増加が見られたが、順調に運転されてきた。

6.2 燃料交換機の洗浄と省洗浄

燃料交換機の当初設計方針は、ナトリウム中で燃料交換終了後、燃料交換機をクレーンで持ち運び近傍のアルコール洗浄装置で洗浄することであった。前述のようにマークIグリッパでの洗浄不良によるグリッパ動作不良の解決策として提案され採用されたのは、ナトリウム中の良い（ドレーナブル）マークII型グリッパ（図7参照）で5年1年月に試作され、雑水アルコールや水蒸気使用による、より良い洗浄結果を得ることができた。この結果は、マークIグリッパに比べ動作も良好で好成績であったが、なお、ねじ部などには未洗浄ナトリウムが残った。また、マーク
I グリッパでは、良い作動性を得るために解体
洗浄が常に必要でこれに約10日／回を要した。
したがって難しい完全洗浄を狙うよりも、普段
は容器からナトリウム付着のまま燃料交換機
を取り出し、アルゴンガス中に洗浄せずに保管
しておき、燃料交換機使用時にはそのままナト
リウム中にグリッパを浸け、付着ナトリウムを
溶出させ、グリッパを作動させるいわゆる「省
洗浄」が考案された。この試験は当初成功し得
るか凝問視された向きもあるが、成功した場合
の効果は著しいものであるため、現在まで4
年にわたり、鋭意実験されてきた。その結果は表
6に示すように順調であった。マークI グリッ
パでは14回の省洗浄試験すべてについて、流
った、しかも著しい変化したナトリウム付着状態の
グリッパであっても、200℃程度のナトリウム
に再浸漬し、リンシングすれば1 ～ 2 時間程度
で再作用化が得られることが明らかとなった。なお、
その前に行ったマークI グリッパでも試験片数
は少ないが、省洗浄がほどほど可能なることを確か
めている。この再作用性効果はグリッパのそのも
の構造変更よりも、物質間隙に入れたナトリウ
ムは、洗浄するよりも再溶出する方が扱い易い
との見解を与えるもので、学理的にも興味ある
事実であろう。省洗浄試験の一つとして、燃料
交換機可動部分が一部ガス中露出の状態で試験
したが、約1日高温ガス中で保持すれば異常な
く動作した。また燃料交換機解体洗浄の結果、
特別な不良は認められていない。これらによ
りグリッパ省洗浄の実用性は十分認められ、実
機では採用の方向に検討されている。この省洗
浄は、他のナトリウム中機器の保持技術にも応
用可能であろう。燃料交換機グリッパ省洗浄の
効果を要約すると次のとおりである。
(1) 若干汚れたナトリウムが付着していても
短時間で作動し得る。
(2) 作動性を確保するためには、完全に近い洗
浄を必要とするので分解しなくてはならず、
これに10日程度を要する。省洗浄では短時間
すみ、大幅な省力化となる。
(3) 作業にともなう放射性アルカリ塵埃を軽く
にしたり得る。
(4) 作業にともなう被曝の可能性を大幅に減じ
ることができると。
7. あとがき

「しんじゅ」燃料交換機フルモックアップナトリウム中試験は、過去5年間にわたり行われ、機能および耐久性が十分立証された。一方、試験、保存、補修、検査を通じてさまざまな知見、経験を得ることができ、かすかな点を除いて問題点は解決されており、無事54年度末には終了の見込みである。以上の成果は「しんじゅ」に直接寄与するばかりでなく実証炉にも参考になるものと思われる。これらの詳細は別冊13編、最終的にはも近17編の成果報告書にまとめられることがなるが、関係者にとって参考になれば幸いである。

関係メーカーおよび当院機械チーム関係者の分を多とするものであり、本部原型炉北川前主任研究員、大川副主任研究員、ナトリウム部の斎藤前部長、三本部長、当室の関西前宅長代理、横沢前副主任研究員等の御指導に感謝を表する。