高速炉プラントにおける放射性腐食生成物挙動解析コード（PSYCHE）

加納 茂雄

A Computer Analysis Code of Radioactive Corrosion Product Behaviour in Primary Circuits of LMFBRs（PSYCHE）

Key Words: Radioactive Corrosion Product, CP, Radioactive Corrosion Product Behaviour, Mass Transfer, Sodium Technology, Radiation Shield, Radiation Control, Reactor Maintenance, PFR, Computer Model.

1. はじめに

近年原子炉プラントの保守・補修時における放射性腐食生成物（Radioactive Corrosion Product）について検討することによる改修改修し、これにより低減することができ、プラントの経済性の向上をはかるうえに効果的であるためである。

軽水炉プラントではCRUD（クラッドと呼ばれる不溶性の腐食生成物）問題として知られ、その挙動と放射性腐食生成物の挙動は、通過した放射性物質の影響を受けるためである。これが問題である。
図1 アルファベット計画の研究開発体系

図2 CP動力解析コード（PSYCHE）開発のフロー
図3 高速燃プラントにおけるCPの挙動

表1 高速燃プラント1次系統内の放射性物質

| 物質 | 固有の放射性物質 | 半減期(日) | 2.3デシベル(1000) | 諸
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>54Mn</td>
<td>54Fe(α)</td>
<td>312</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>60Co</td>
<td>(90)Co</td>
<td>1924</td>
<td>1.17, 1.33</td>
<td></td>
</tr>
<tr>
<td>58Co</td>
<td>(57)Co</td>
<td>71</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>57Co</td>
<td>(57)Co</td>
<td>270</td>
<td>0.12, 0.14</td>
<td></td>
</tr>
<tr>
<td>51Cr</td>
<td>(51)Cr</td>
<td>28</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>54Fe</td>
<td>(54)Fe</td>
<td>949</td>
<td>Mn X-ray(40)</td>
<td></td>
</tr>
<tr>
<td>54Fe</td>
<td>(54)Fe</td>
<td>45</td>
<td>1.10, 1.28</td>
<td></td>
</tr>
<tr>
<td>65Zn</td>
<td>65Zn(γ)</td>
<td>2.92×107</td>
<td>Co X-ray(40)</td>
<td></td>
</tr>
<tr>
<td>110Ag</td>
<td>(110)Ag</td>
<td>250</td>
<td>0.659, 0.88</td>
<td></td>
</tr>
<tr>
<td>137Cs</td>
<td>(137)Cs</td>
<td>115</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>137Ba/La</td>
<td>(137)Ba/La</td>
<td>1.1×107</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>59Zn</td>
<td>(59)Zn</td>
<td>64/55</td>
<td>0.70, 0.37</td>
<td></td>
</tr>
<tr>
<td>(59)Zn</td>
<td>(59)Zn</td>
<td>8</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>(59)Zn</td>
<td>(59)Zn</td>
<td>64/55</td>
<td>0.70, 0.37</td>
<td></td>
</tr>
<tr>
<td>233Pu</td>
<td>(233)Pu</td>
<td>8.8×108</td>
<td>5.29(a)</td>
<td></td>
</tr>
<tr>
<td>97Br</td>
<td>(97)Br</td>
<td>4500</td>
<td>0.0193</td>
<td></td>
</tr>
<tr>
<td>100Mo</td>
<td>(100)Mo</td>
<td>950</td>
<td>0.31, 0.27</td>
<td></td>
</tr>
</tbody>
</table>

注: 表中の括弧内は、照射によって生成される放射性物質を示す。
し、しかもMnは炉心構成材料をつくる各元素のなかで最も溶出しやすい元素のひとつであるため発生量も多く、また1次系冷却水での移動性も高いので「高濃度P問題におけるCP問題とはMn問題である」としばしば主張される。放射性コバルトはMnの26Coがスチレンレ酸中でMn不純物としての保持度が大きい。一方、26Coはオーステナイト系の主要構成元素であるNiの存在比67.85%の26Niを核収束として26Ni(n, p)26Coにより生成されるが、26Coの中性子吸収断面積は著しく大きく（中性子吸収断面積σ = 1900b、共振吸収Iγ = 7000b）、特に高速炉心では外中性子の共振吸収により26Coの90〜95%程度のものが26Coの安定核に転換され、その発生量は極めて少ないものとなる。26Zn、110Agは主核同位体であるZn、Agが鋼材中における濃度表不純物（1〜0.1ppmオーダ）でありながら中高温度で高い溶解度を有（300〜600℃の温度範囲においてそれぞれZn = 0.1〜3.3ppm、Ag = 4.2〜32.1ppm）ので、これにより炉心部で散乱化され、ナトリウム化水素などの低濃度の核燃料が核となるが26Mn等と比べると少ない。26Feは核収束及び26Feの存在比が0.31%と低いので少ない。26Feは生成量、1次系冷却水のインペリオ化も強くなくなると思われるがX線吸収のみの放射線放射形態には寄与しない。これらのシスメータミン放射線形態は核の安定化、また主体クロム酸ナトリウム（NaCrO₄）が比較的安定で図5に示すような力学的安定基底にあることが推定されている。いずれにせよステレンレ酸材料の表面に形成されている核燃料をもたらす核不純物（100ppm）核収束及び26Fe-26Cr系の酸化皮膜は核の安定を核燃料中で得ることが考えられる。しかし、ナトリウム中の金属元素の酸化と液相の高濃度では図6に示すようにppmオーダーと低い。合金状態の核燃料の平衡濃度は核不純物の核性状を核硬粒子の形態が与えることがある。ナトリウム中の酸化と液相の高濃度の核不純物は核燃料中に形成されている核燃料をもたらす核不純物（100ppm）核収束及び26Fe-26Cr系の酸化皮膜は核の安定を核燃料中で得ることが考えられる。しかし、ナトリウム中の金属元素の酸化と液相の高濃度では図6に示すようにppmオーダーと低い。合金状態の核燃料の平衡濃度は核不純物の核性状を核硬粒子の形態が与えることがある。ナトリウム中の酸化と液相の高濃度の核不純物は核燃料中に形成されている核燃料をもたらす核不純物（100ppm）核収束及び26Fe-26Cr系の酸化皮膜は核の安定を核燃料中で得ることが考えられる。しかし、ナトリウム中の金属元素の酸化と液相の高濃度では図6に示すようにppmオーダーと低い。合金状態の核燃料の平衡濃度は核不純物の核性状を核硬粒子の形態が与えることがある。
の運転条件等（運転初期、電極運転、燃料交換後の再起動等）に影響を受け発生量に違いがみられ、また異なった挙動を示す。

CPの主な核種は54Mn, 60Co, 89Sr, 99Coであり、核種に特有な選択的溶出、沈着挙動を示し、大別するとコバルト型プルレックス核種（54Mn, 60Co）とマンガン型プルレックス核種（89Sr）になる。コバルト型核種はマンガン型核種に比べるとナトリウム中への溶出傾向が大きい。これはコバルト型核種はステンレス鋼に留まりやすく、再処理を行う鍋体表面の溶出過程が比較的長時間を要する一方、マンガン型核種はステンレス鋼中に留まりやすく鍋体表面の溶出のみならず鍋体内からの拡散溶出が観察され、これが重要な過程となると考えられる。しかし54Mnは高いナトリウム中で優先的溶出傾向を示し、この点ではマンガン型に近い。なお60Coはコバルト型,89Srはマンガン型の挙動を示す。これらの挙動を考慮して安定核種の挙動をマンガン型核種に比べてナトリウム中で沈着しやすい傾向を示す。これらのCPは1次系スリットを移行し鍋体に沈着するが、コバルト型核種は沈着しやすく、この点では特にスリットで

図5 金属クロム, 鎳クロム素ナトリウム, クロム系核種の溶出挙動

図6 ナトリウム中溶出金属系の溶出挙動
及び配置の水平及び垂直配置といったレイアウトの
C.P.の影響に及ぼす影響を、移行物質の粒状性と関連
している。沈着物層の安定性及び粒状性の問題は長
期における運転状態からその程度の把握を進めねば
べきである。

次に沈着物のいくつかの特徴と固定に関連した事
項について述べる。コールドトラップ温度を120°C
以下とし、冷媒温度を57℃にした条件下では、
金属の溶出量が抑えられる結果、図7に示すように、
沈着物層には特にSiの組成が増加し、この組成パラ
メータがわらば移動に沿って物質層で観察を重ねて
いる。これはステンレス鋼中に0.5%程度含まれ
ているSiが優先的にニトリウム中に移動し、移行し
たもので、沈着物としてはナトリウム、SIO2などが考
えられる。金属成分としては、鋼の酸化物を反映
してMn、Ni、Crの絶対量が大きい。沈着物の微小部
X線分析法によりMnとNiの分布の相関性が見出さ
れている。またニッケルはMnを優先的に拡散する
能力を有し、高圧ニトリウム中に拡散されたニッケ
ルはNi、Mn、Crの合金相の形成を示している。この
ように図8に示したようにNiとMnの合金や金属同化
合物などの結晶として共沈着し、一部は母材基質中
に拡散する。高圧部では主として基質中に拡散する。

Coについてはナトリウム層中で著しく拡散する
ため、照射材料を用いた放射性トレイヤー試験による拡
散濃度をと母材基質拡散以外に利用できるものが
少なく推測される。図9に示すようにCoの拡散が高圧部では基質
への拡散となることは同様である。実験部の不
同の高い焼度沈着物中にパーセントオーダーのCoが
検出され、10％程度の高いCo含有率の焼結状粒状
の沈着物組織が数個ではあるか見出されている。し
か、こうした沈着物の形態が主たる証拠は現
在のところない。図9に示す沈着物のパターンは、実験
部では線状領域の下流域であるホットレグに優

<table>
<thead>
<tr>
<th>SEM像</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SUS 304</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X線分析(EDS)結果</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>元素</td>
<td>SUS 304</td>
<td>Iron</td>
<td>Nickel</td>
</tr>
<tr>
<td>Na</td>
<td>24.48%</td>
<td>6.78%</td>
<td>8.81%</td>
</tr>
<tr>
<td>Al</td>
<td>0.71%</td>
<td>0.74%</td>
<td>0.70%</td>
</tr>
<tr>
<td>Si</td>
<td>17.45%</td>
<td>5.64%</td>
<td>11.35%</td>
</tr>
<tr>
<td>Cr</td>
<td>4.13%</td>
<td>3.47%</td>
<td>4.26%</td>
</tr>
<tr>
<td>Mn</td>
<td>5.64%</td>
<td>3.70%</td>
<td>13.48%</td>
</tr>
<tr>
<td>Fe</td>
<td>24.06%</td>
<td>29.28%</td>
<td>0.31%</td>
</tr>
<tr>
<td>Co</td>
<td>—</td>
<td>0.32%</td>
<td>0.19%</td>
</tr>
<tr>
<td>Ni</td>
<td>3.58%</td>
<td>3.17%</td>
<td>0.98%</td>
</tr>
</tbody>
</table>

図7 ナトリウム中沈着物観察例
光の選定の関向を示している。

同じC40と比較的対照的な洗浄方法を示している。C40含有材料としては、クロム洗浄物、塩クロ
ム洗浄物が選定されることが多い。C40含有材料の洗浄効果は、特に光学的安定性に関する研究が進んでいる。

実験機関では生成核反応の光学特性を支配因子としている。

一方、C40は光学的安定性（ドライバー、プラント等）にわいて生成されるが、高度な核反応では光学的安定性を

C40含有材料を用いた核反応の新規設計が、比較的すべての反応において大きな影響を及ぼす。このことから、洗浄工

少ないC40の拡散が可能である（C40の洗浄物はC40より

高度な核反応を伴う）と報告されている。これにより、C40の

3. C40挙動解析コード

ナトリウム中におけるC40質量移行及び洗浄工におけるC40挙動解析と統一的に考えることを可能にし、これ

C40の洗浄実験を基にした解析コードを構築した。この解析コードは、洗浄実験を基にした解析コードと異なり、

以上の結果から、核反応材料の洗浄及びC40挙動を考慮した解析コードの提案がなされる。
の溶解を行った。

我が国におけるCP解釈コードとしては、PSYCHEコードの他にSAFFIREコードがある。解釈の目的、結果、解釈の過程等に差異があるため、同じコードは単純に比較し劣勢を論ずることは適当でない。SAFFIREコードの内容を例に挙げた。

3.1 解釈モデル

PSYCHEで解釈モデルとして採用した「溶解・沈殿モデル」[1]の基本的考え方を図8に示す。これは①合金の固相成分比率及びその放射性同位体の濃縮の溶解・溶解移行、②初期腐食と観察腐食に依存される溶出速度の時間依存性、③各合金成分比率及びその放射性同位体で特有な溶出速度のナトリウム中溶出速度依存性等、④等温における溶出及び後続速度の速度に比例した低下を意味する下限効果を考慮し、ナトリウムの溶出及び腐食の速度に関する溶解又は塩化物の種々の影響を定量的に説明し、再現できるものである。

「溶解・沈殿モデル」における合金の固相成分比率及びその放射性同位体の質量移行の動力学は、これらの合金試験は純水との平衡速度とナトリウム中における濃度との比較をできる。質点移行過程は①溶液中の拡散及び懸濁状態の溶解（成分）又または表面腐食（化学的腐食）②溶液ノトラウム界面における物質移動（原子の単純溶解あるいは懸濁状態の拡散及び合金腐食あるいは化合物などの架橋物質）③溶液物質のナトリウム界面におけるナトリウム濃度濃度（ナトリウム環境）"(南島)、ナトリウムの拡散による鈍質表面と鈍質流域の間の移動④ナトリウム液による流れに沿った物質移動から成っている。

図9 鈍質中の拡散並びに懸濁状態の溶解及び表面腐食

（a）鈍質の拡散において、合金成分金属比率及びその放射性同位体の溶出率による溶解及び鈍質中での拡散をより鈍質中へ溶出する。鈍質中では鈍質表面における表面溶出並びに鈍質中での拡散により溶出する。これからの溶出をそれぞれ Disabled、"U"と記す。鈍質中の拡散は、鈍質と鈍質中における合金成分金属比率の化学ポテンシャル差が低い。これはナトリウム濃度と物質の丁度がある程度の領域を示す。鈍質中での拡散は鈍質に依存する。フィッティングの速度に比例し、合金成分金属比率は鈍質中を占める。鈍質中で拡散を伴うと考える。材料の拡散係数の少ないものを考えると東京電力におけるナトリウム挙動の影響がある。鈍質と鈍質中における拡散係数の値は鈍質中で大きく、鈍質中で鈍質中への拡散係数に比べて大きい。従って同条件下で鈍質及び鈍質中での拡散係数の値は鈍質中を占める。実験結果の項目は図示する。拡散係数の合金成分金属比率による差は小さく、もしが材料の製造、加工処理条件に起因するものかつ大きく、鈍質中と鈍質中で拡散係数が比較して拡散係数が大きくなるという条件の影響も考慮した。例えば図9のナトリウム依存によりUS316、304ステンレス鋼について求められた拡散係数（D）を用いた表2に示す。

(2) 鈍質ノナトリウム界面における物質移動
| 項目 | 記号 | 式
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>浴温</td>
<td>T</td>
<td>$U = 3.3 \times 10^{-4} \times T^{1.9}$</td>
</tr>
</tbody>
</table>

| 項目 | 記号 | 式
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>酸素濃度</td>
<td>x</td>
<td>$x = \frac{2.17 \times 10^{12} \times T^{0.8} \times \exp(-2.53 \times 10^{15} \times T^{-1.3})}{1.15 \times 22.3}$</td>
</tr>
</tbody>
</table>

| 項目 | 記号 | 式
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>サイクリック</td>
<td>J</td>
<td>$J = 1.3 \times 10^{-3} \times S_{0.15}$</td>
</tr>
<tr>
<td>サイクリック</td>
<td>J'</td>
<td>$J' = 2$</td>
</tr>
</tbody>
</table>

| 項目 | 記号 | 式
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>酸素の活性</td>
<td>K</td>
<td>$K = \frac{N_a}{N_b}$</td>
</tr>
<tr>
<td>酸素の活性</td>
<td></td>
<td>$K_a = 5 \times 10^{-4} \times S_{0.15}$</td>
</tr>
<tr>
<td>酸素の活性</td>
<td></td>
<td>$K_b = 5 \times 10^{-5} \times S_{0.15}$</td>
</tr>
</tbody>
</table>

| 項目 | 記号 | 式
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>沸点</td>
<td>σ</td>
<td>$\sigma = 8.51 \times 10^{-5} \times T^{-1/4}$</td>
</tr>
</tbody>
</table>

水性スカオガス中、逐次に $J = \text{C}\sigma - \text{K}\text{C}_j$ または $\text{K}\text{C}_j - \text{K}\text{C}_j$ (1) \[(+体質: 出口, -体質: 出口)

これで酸素濃度には1次反応としている。このモデルにより^{60}Coと^{57}Mnの酸素濃度依存性の特徴を導くより説明できる。$eta$は化学的分配係数を${\eta}$とし

$\eta = \text{K}\text{C}_j$ であり、酸素濃度依存性は$\beta = \text{K}\text{C}_j - \text{K}\text{C}_j$ で表される。浴温が十分高ければ、酸素濃度依存性は$\beta = \text{K}\text{C}_j - \text{K}\text{C}_j$ 程度となる。概ねナトリウムの試験との適合性、実験結果による酸素濃度の改良により得られた化学的分配係数が表2に示す。

(3) ナトリウム溶渡流動形中の物質移動

流体流れにある流れる際の物質移動には流体流れの液相の有する領域である化学反応が形成されることがよく知られている。この物質には酸素濃度が存在しており、これは溶解酸素を含んでいるといわれ

が、平均流速分には流体の流速分布と一致する。酸素濃度は流体を流れる速度を考慮する場合平均的には分子拡散（分子拡散係数および分子拡散）が流体流れ（レイノルズの応力及び流体温度拡散）を大きく支配する領域である。流体中には溶存する物質分子の挙動にこれに対応して分子拡散が流体流れによ

によりナトリウム中の溶存酸素を化学吸収する。その結果生成する溶解拡散の部分的変更により、静止の金属試料との結合を弱めナトリウム中の溶解度が増加する。ナトリウム中の

溶解ポテンシャルの高い水素 (Mn, Ni, Cr, Zn, Agなど) はこれらの流体の溶出を大きく、溶解ポテンシャルが低い水素 (Fe, Coなど) では大きな正味吸収となる。図9に示すと図9のようになる。

流出または溶液濃度を J, 正味の反応速度定数を K_a, K_b 及び界面の濃度を C_i, C_j (はナトリウム中を示す) また滞留酸素濃度を σ (ppmで表わ

した酸素濃度を X とすると $\sigma = X/12$ とした、このモデルにより、

$J = \text{K}\text{C}_j - \text{K}\text{C}_j$ または $\text{K}\text{C}_j - \text{K}\text{C}_j$ (1)

(十体質: 出口, 一体質: 出口)

+ \text{体質: 出口, -体質: 出口)

これで酸素濃度には1次反応としている。このモデルにより^{60}Coと^{57}Mnの酸素濃度依存性の特徴を導くより説明できる。$eta$は化学的分配係数を${\eta}$とし

$\eta = \text{K}\text{C}_j$ であり、酸素濃度依存性は$\beta = \text{K}\text{C}_j - \text{K}\text{C}_j$ で表される。浴温が十分高ければ、酸素濃度依存性は$\beta = \text{K}\text{C}_j - \text{K}\text{C}_j$ 程度となる。概ねナトリウムの試験との適合性、実験結果による酸素濃度の改良により得られた化学的分配係数が表2に示す。

(3) ナトリウム溶渡流動形中の物質移動

流体流れにある流れる際の物質移動には流体流れの液相の有する領域である化学反応が形成されることがよく知られている。この物質には酸素濃度が存在しており、これは溶解酸素を含んでいるといわれ

が、平均流速分には流体の流速分布と一致する。酸素濃度は流体を流れる速度を考慮する場合平均的には分子拡散（分子拡散係数および分子拡散）が流体流れ（レイノルズの応力及び流体温度拡散）を大きく支配する領域である。流体中には溶存する物質分子の挙動にこれに対応して分子拡散が流体流れによ

によりナトリウム中の溶存酸素を化学吸収する。その結果生成する溶解拡散の部分的変更により、静止の金属試料との結合を弱めナトリウム中の溶解度が増加する。ナトリウム中の

溶解ポテンシャルの高い水素 (Mn, Ni, Cr, Zn, Agなど) はこれらの流体の溶出を大きく、溶解ポテンシャルが低い水素 (Fe, Coなど) では大きな正味吸収となる。図9に示すと図9のようになる。

流出または溶液濃度を J, 正味の反応速度定数を K_a, K_b 及び界面の濃度を C_i, C_j (はナトリウム中を示す) また滞留酸素濃度を σ (ppmで表わ

した酸素濃度を X とすると $\sigma = X/12$ とした、このモデルにより、

$J = \text{K}\text{C}_j - \text{K}\text{C}_j$ または $\text{K}\text{C}_j - \text{K}\text{C}_j$ (1)

(十体質: 出口, 一体質: 出口)

+ \text{体質: 出口, -体質: 出口)

これで酸素濃度には1次反応としている。このモデルにより^{60}Coと^{57}Mnの酸素濃度依存性の特徴を導くより説明できる。$eta$は化学的分配係数を${\eta}$とし

$\eta = \text{K}\text{C}_j$ であり、酸素濃度依存性は$\beta = \text{K}\text{C}_j - \text{K}\text{C}_j$ で表される。浴温が十分高ければ、酸素濃度依存性は$\beta = \text{K}\text{C}_j - \text{K}\text{C}_j$ 程度となる。概ねナトリウムの試験との適合性、実験結果による酸素濃度の改良により得られた化学的分配係数が表2に示す。

(3) ナトリウム溶渡流動形中の物質移動

流体流れにある流れる際の物質移動には流体流れの液相の有する領域である化学反応が形成されることがよく知られている。この物質には酸素濃度が存在しており、これは溶解酸素を含んでいるといわれ

が、平均流速分には流体の流速分布と一致する。酸素濃度は流体を流れる速度を考慮する場合平均的には分子拡散（分子拡散係数および分子拡散）が流体流れ（レイノルズの応力及び流体温度拡散）を大きく支配する領域である。流体中には溶存する物質分子の挙動にこれに対応して分子拡散が流体流れによ

によりナトリウム中の溶存酸素を化学吸収する。その結果生成する溶解拡散の部分的変更により、静止の金属試料との結合を弱めナトリウム中の溶解度が増加する。ナトリウム中の

溶解ポテンシャルの高い水素 (Mn, Ni, Cr, Zn, Agなど) はこれらの流体の溶出を大きく、溶解ポテンシャルが低い水素 (Fe, Coなど) では大きな正味吸受

れる。図9に示すと図9のようになる。

流出または溶液濃度を J, 正味の反応速度定数を K_a, K_b 及び界面の濃度を C_i, C_j (はナトリウム中を示す) また滞留酸素濃度を σ (ppmで表わ

した酸素濃度を X とすると $\sigma = X/12$ とした、このモデルにより、

$J = \text{K}\text{C}_j - \text{K}\text{C}_j$ または $\text{K}\text{C}_j - \text{K}\text{C}_j$ (1)

(十体質: 出口, 一体質: 出口)

+ \text{体質: 出口, -体質: 出口)
散を大きく上まわっており支配的である。流体境界層の上部は乱流状態となるが、ここではこうした流体境界層の構造を単純化し易流状態仮定で考える。この層における物質移動係数（κ）は、ナットリウム管中における液態COと物質移動係数をDとするとSherwoodの式

\[k = 0.023Re^{0.8}Se^{1/3}D/d \]

を基本として導出される。多界面における反射を考慮に入れた、いわゆる拡散物質移動係数（K）は

\[K = kK/k \]

となる。κ>κならばK=kであり、液体拡散係数となり、Fe、Co、Crはこの型の移行となる。移行速度の流れ（\(V \)）依存性は、V^0とされる。固体ナットリウム水素からCOの拡散における流速依存性を解析してDが得られたが、CO物質拡散によるとナットリウム管中拡散係数に大きな変動があるという観測は特有ないので、このDを管のCC管路にも適用している。

（4）ナットリウム流による流速に沿った物質移動

壁面近傍の流動はナットリウム流によって現われる。この過程は流速の流れに基づいて支配方程式が、これにより流出と沈着現象の双方に影響する流動状態現象が生じる。周りがナットリウム管路の流れ領域ではナットリウムの流れCC流速は流れに沿って次第に増大してゆき、流速領域ではナットリウム流の流れの増大のため、流れに対応して流れに沿って流速に沿った物質移動係数が減少し、流速が大きくなる一方、流れの流れ領域にはナットリウムの流れの流れに沿った減少に伴い流速が増大してゆく現象である。流速に沿った領域を含む領域を流れ領域においては流速の拡散係数が増大してゆくのが、ナットリウムの中の流速流れに沿って流速が増大していくので、流れの流れに沿った流れの流れが決定される。

以上述べてきた「溶媒拡散モデル」に基づき、壁面流速の流れに基づき拡散係数を流出口と流れ方向に近似した流速に沿って拡散係数をC、ナットリウム流れをV、流速の流速流れに沿ったものを、放射化学をR、拡散係数を入るとすると、拡散方程式は次のとおりである。

拡散方程式

\[\frac{\partial C}{\partial t} + U \frac{\partial C}{\partial x} - \lambda \frac{C}{C_0} = 0 \]

（5）

境界条件

\[\left. \frac{\partial C}{\partial x} \right|_{x=0} = 0 \]

（6）

初動条件

\[C = C_0 \text{ at } t = 0 \]

（7）

質量保存則

\[\frac{\partial C}{\partial t} + \frac{\partial (UC)}{\partial x} = 0 \]

（8）

質量フラックス

\[J = D \frac{\partial C}{\partial x} \]

（9）

（Jの符号：流出、符号：沈着）

そこで質量フラックスJは辺が凝縮槽、右边がナットリウム管を数えず、流れは平衡状態とパルクナットリウム中変化の加増、初期量より流速領域と拡散物質移動係数の値となり、流れは流れ領域における拡散フラックスと流速を流速に沿っての流速による流速を減らす。まず流れの速度方向に沿った流れを一定（R=0）

\[J = \frac{UCC}{\partial t} = \frac{UCC}{\partial t} = \text{一定} \]

（10）

実際的には流速流速流速よりCを測らね。
図10 PSYCHE JOANDARC コードによる CPR 効果、流変解析フローチャート

3.2.1 CPR 効果解析部

CPR 効果解析部は、①「溶解・沈着モデル」により得られた解析結果による高濃縮プラントにおける CPR 効果評価。②高濃縮プラントにおけるラドン状態 CPR 効果評価。③放射能表面活性化材からの放射放出効果評価。④高濃縮プラントにおける CPR 効果評価。及び⑤外気外ルール成析解析等の核機能を指す。

①の基本機能、②～⑤はオプション機能である。

計算の主な方法は次のとおりである。

1) 計算法ローカス

CPR 効果の経時変化の数値的な解析は、時間全体ステップに分割し、各タイムステップ状況の中ではCPR 効果は定常状態にあるとして扱う。従って3.1節に示したところにより得られた解析結果は各タイムステップ間に適用し、次のタイムステップでの初期条件として用いることになる。

2) CPR の発生

表3(a)に示す8種の放射性核種とそれらの核種解体である7種の発生核種を取り扱う。また放射性核種の生成反応は表3(b)に示す10種のものを対象とし、ナトリウム中の放射性核種についてはマンガン型とコバルト型とを表3(c)に示す。

(3) 被曝者を想定

ループ型高濃縮プラント1次核素断面を図11に示す。1次核素はシンと冷却系に大別され、冷却系はさらに主冷却系とオーバークロール系に分割される。冷却系においてはCPRの生成、放出解析式を用いた放射と沈着が計算され、冷却系では放射解析式を用いて機器・設備構造へのCPRの沈着が計算される。また検査にのち、冷却系については非対

表3(a) 解 析 構 種

<table>
<thead>
<tr>
<th>技術</th>
<th>PSYCHE-59</th>
<th>放射</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

表3(b) 核 反 応

<table>
<thead>
<tr>
<th>核種</th>
<th>PSYCHE-59</th>
<th>放射</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

表3(c) ナトリウム中質量移行の取扱

<table>
<thead>
<tr>
<th>設定</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
</tr>
<tr>
<td>Cr</td>
</tr>
</tbody>
</table>

* 実験及び計算解析の関係を定義

** マンガニン型

*** コバルト型
4.1「常陽」プラントとCP測定

解析コードを用いて簡略化したプラントにおけるCP挙動解析を行うためには心相データ、プラント系構成及び冷却条件、事故を含めた運転状況の各データが必要である。

「常陽」系系へのCP挙動解析における特徴はMK−1型心MK−II型心が心相が異なることである。

MK−Iでは炉心燃料部の周辺にプランケット燃料が配置されているが、MK−IIでは炉心燃料の周辺は中性子反射体が配置されている。このため、同一原子炉で2種の異なる構成と核データを有する核相系を連続させて解析することが必要であった。
る。また、解析したCPの放射性特性は^{54}Mn、^{60}Co、
^{51}Cr、^{53}Coの4種類である。

(1) 枠ゲージ

核材料の中性子照射による放射性核種の生成量
計算において考えるべき問題は、中性子エネルギー
の割合のとり方と平均反応断面積が位置によって変
化することである。CP挙動解析では面積計
算で用いられている20個と21個の中性子の比較検
査を行ったが、21群が妥当であることを確認した。
これらは^{54}Fe(n,p)^{54}Mnおよび^{54}Ni(n,p)^{54}Coの反応は高速中性
子反応で20群と21群の割合はあまりないが、^{54}Co(n,\gamma)
^{55}Coおよび^{54}Co(n,p)^{54}Co反応については、反応断面積
が大きくなる低エネルギー領域（熱中性子及び熱外中
性子領域）で20群構造と21群構造に比較して低くなっ
ており、断面積の不均一性が重ねられることで、各低
エネルギー領域での中性子エネルギーを考慮しな
て計算される。この考えを核材料の中性子能量
に適用したのが、MK-Ⅰ、MK-Ⅱともに21群の中性子エネルギー
で計算されたものである。

(2) 統合実験及び38領域であること、それぞれの領域の中性子スペク
トルの変動を考慮した計算で計算幅標面積を用いて、他
の反応については各領域共通である。

MK-Ⅰ、MK-Ⅱでは、上
記の3反応については同様の手順を3領域に、また上部
・下部反射体、ガスプレーシャス、上方向反射体の計6
領域に分けて計算している。

(3) 体系構成及び冷却条件

核エネルギー変換解析式を用いたCP挙動計算は、MK-Ⅰ、MK-Ⅱ及
びMK-Ⅲでそれぞれ56及び38領域
に分割して行われた。各領域にはCP挙動計算のた
めに必要な冷媒通路数、冷却面積などの基礎面
積計算用パラメタ、領域構成を分類する数値データ及び
材質、形状、温度、酸素濃度、半径等から
なる熱力学データが選用される。核入口から出
口までの温度上昇と流体温度変動はLubarsky-Kauf
manの熱伝達式を用いた計算により求められた。熱
伝達との比較により核出口温度で実測値の方が計
算値より2℃～4℃高いもののが30群発生量が与
える影響は僅少で1～3％でありが確認されている。

また、^{54}Coの評価上重要な核材料SUS316ステンレス
鋼材料中のCo不純物の含有率については分離値ま
たはスペック値に基づき、冷却条件を考慮して0.1％
のランピング等の腐食損材以外の耐熱構成材に注
意を欠き0.1％を基準値として用いた。

冷却条件では、まず1次冷却系水温における中間
冷却器、冷却器、冷却器が核燃料でモデル化さ
れ、このうち中間冷却器は5割で分割され、
また1次冷却系配管はハーネッツ（H/L）、中間
冷却器からポンプまでのコレドプル（C/L）、ポンプからチョッパまでのコレドプル（C/L
2）（3回）、チョッパから冷却器入口までのコレドプル
（3回）の3領域に分割された。カールの冷却
系ではコレドプルが多く核燃料モデル化され、
ディフラックス系は考慮を避けたが3次元レイノルダ
ズに沿って幾つかのサブ領域に分割された。各領域では等温
方向に温度帯の解体データと冷却材温度、流速が与
えられている。なお、冷却水流量は水中冷却系
系が380m³/hで、冷却水温度で1100℃とした。

冷却水温度変化についてはサンプリング冷却
水の分離値を基にした平均的な値、MK-Ⅰ
2.5ppm、MK-Ⅱ 1.2ppmを標準値とした。

(3) 運転条件

運転条件データはMK-Ⅰ、MK-Ⅱで実在を
基にして定められた。各サイクルの運転開始日数は
MK-Ⅰ、MK-Ⅱでそれぞれ3800日MW出力、100
0MW出力日に換算された。また、各サイクルで行
われた熱交換効果についても考慮されている。

MK-Ⅱ1の運転の計画については南西サイクル45日で設定している。

さて、単数、MK-Ⅰの運転条件としては、1次
冷却系の冷却器実装の水温条件と熱交
換器の測定値が用いられた。測定条件は冷却器
実装を用いて軽核化されたガスニューム半導体検
器を用いてH/L、C/L (1)、C/L (2)配管の
計12の位置で測定された。また過程温度計算は、冷却
水温度変化は冷却水温度をTLDを基に変化させ、測定
位置の数は93点である。それぞれの測定位置を図12
と図13に示す。

測定計画は3回行われ、それぞれMK-Ⅰ終了100
日冷却後（昭和57年4月）、MK-Ⅱ第1サイクル終了
41日冷却後（昭和58年1月）、同じく第7サイクル終了46
日冷却後（昭和59年5月）の時点である。それぞれの
時点での検出比率（MWで）は2,780×10^4、3,949×
4.2 MK-I, MK-IIにおける検証結果

「中核」におけるCP液密測との対比によってPSYCHEコードの検証を行うにあたり、CP液密測と管路内の液密の値を比較することにより、MK-IおよびMK-IIにおける検証結果を示した。図14にMK-I及びMK-II各点での54Mn60Coの回収結果の計画値と計算値の比較を示す。図15に広範囲の検証はそれぞれMK-I, MK-IIにおける各領域での検証結果の比較を示す。間違めはそれらの平均値を示している。なお実測、点線のグラフはMK-I, MK-IIの計算結果である。この図により、まず54Mnの液密測は60Coに比べて約1/4高い、それぞれ約1.1μCi/㎝2と0.01μCi/㎝2のレジがあることが分る。54Mnでは、C/L(1)の液密と計算値はよく一致し、またH/Lでは計算値は高目で実測値の上限値で一致するが、C/L(2)では実測値の方が上まわっている。60CoではMK-Iの結果は全般的に実測値と計算値はよく合致しているが、MK-IIでは計画値が上まわっている。計算結果で60Coの分布が54Mnの分布に比べて大きく大きいのでは、60Coが線下流のH/Lでの測定値を示し、また液密値を大きいかということである。これはポンプ、チャック弁でストリーム流量は大であり、配置はH/L、C/L(1), (2)で20B, 18B, 12Bと次第に減らされていることによる。
図14 MK-1, MK-2での$^{3}{}^{9}$Mn, 40Coの沈黙領域別放射密度の比較
(MK-1 Kcy103 = 1221日, MK-220 = 41日 = 315日)

表4 PSYCHEコードの精度（沈黙密度）

<table>
<thead>
<tr>
<th>検査 領域</th>
<th>計算 / 実測</th>
</tr>
</thead>
<tbody>
<tr>
<td>H/L</td>
<td>1.10</td>
</tr>
<tr>
<td>C/L(II)</td>
<td>1.14</td>
</tr>
<tr>
<td>C/L(ID)</td>
<td>0.53</td>
</tr>
</tbody>
</table>

MK-1 Kcy103 = 1221日, MK-220 = 41日, MK-220 = 315日, MK-220 = 315日。

MK-1 MK-2サイクル終了の時点で$C/E = 0.5$で計算値が低かったが, これを除けば全般的によく一致している。

従ってPSYCHEコードによるCP洛容分布計算の精度は$C/E = 0.5$で一致するファクター2の範囲で一致している場合を除き, MK-1 MK-2サイクル終了の実測時点での実測結果と最終値の比較を示す。図15はMK-1 MK-2サイクル終了後の実測時点で実測結果と計算値の比較を示す。実測値は平均約30mR/hのレベルにあり。実測値と計算値はよく一致している。
一致しており、特にC／L（1）、C／L（2）ではC／E=0.7～1.3である。H／Lは計算値が高くある。H／Lは水位管理が高めである。H／Lはポンプへの供給量の影響で実測値、計算値両者ともにピーク状に高い傾向がある。ポンプ設備の影響は他に述べたように、ポンプの効率が高いほど影響が大きいと考えられる。

冷却器出口及び入出量の実測値における増大がストライボ中性子による影響であり、計算値はこの値を考慮している。計算値には該当の結果が示されている。

以上に述べた検証の結果から、PYSYCHEコードは、現実に現れる効果を再現できることが確認された。

5. \[\text{「常温」} \] C電極値の検証

「常温」 C電極値により検証されたPSYCHEコードを用いて「常温」 C電極値を計算される。

図16はMK-Ⅱにおける冷却系内のC電極値の推移を示したものである。C電極値は最大量となっており、Coの約20～25倍となっている。MK-Ⅱ第2サイクル終了後の実験時のもので、第17サイクル終了付近の実験時では、C電極値は5.8倍、Coは4.9倍に増大する。

図16はMK-Ⅱにおける1次冷却系内のC電極値の推移を示したものである。C電極値は最大量となっており、Coの約20～25倍となっている。MK-Ⅱ第2サイクル終了後の実験時のもので、第17サイクル終了付近の実験時では、C電極値は5.8倍、Coは4.9倍に増大する。

図16はMK-Ⅱにおける冷却系内のC電極値の推移を示したものである。C電極値は最大量となっており、Coの約20～25倍となっている。MK-Ⅱ第2サイクル終了後の実験時のもので、第17サイクル終了付近の実験時では、C電極値は5.8倍、Coは4.9倍に増大する。

図16はMK-Ⅱにおける冷却系内のC電極値の推移を示したものである。C電極値は最大量となっており、Coの約20～25倍となっている。MK-Ⅱ第2サイクル終了後の実験時のもので、第17サイクル終了付近の実験時では、C電極値は5.8倍、Coは4.9倍に増大する。

図16はMK-Ⅱにおける冷却系内のC電極値の推移を示したものである。C電極値は最大量となっており、Coの約20～25倍となっている。MK-Ⅱ第2サイクル終了後の実験時のもので、第17サイクル終了付近の実験時では、C電極値は5.8倍、Coは4.9倍に増大する。

図16はMK-Ⅱにおける冷却系内のC電極値の推移を示したものである。C電極値は最大量となっており、Coの約20～25倍となっている。MK-Ⅱ第2サイクル終了後の実験時のもので、第17サイクル終了付近の実験時では、C電極値は5.8倍、Coは4.9倍に増大する。

図16はMK-Ⅱにおける冷却系内のC電極値の推移を示したものである。C電極値は最大量となっており、Coの約20～25倍となっている。MK-Ⅱ第2サイクル終了後の実験時のもので、第17サイクル終了付近の実験時では、C電極値は5.8倍、Coは4.9倍に増大する。

図16はMK-Ⅱにおける冷却系内のC電極値の推移を示したものである。C電極値は最大量となっており、Coの約20～25倍となっている。MK-Ⅱ第2サイクル終了後の実験時のもので、第17サイクル終了付近の実験時では、C電極値は5.8倍、Coは4.9倍に増大する。

図16はMK-Ⅱにおける冷却系内のC電極値の推移を示したものである。C電極値は最大量となっており、Coの約20～25倍となっている。MK-Ⅱ第2サイクル終了後の実験時のもので、第17サイクル終了付近の実験時では、C電極値は5.8倍、Coは4.9倍に増大する。

図16はMK-Ⅱにおける冷却系内のC電極値の推移を示したものである。C電極値は最大量となっており、Coの約20～25倍となっている。MK-Ⅱ第2サイクル終了後の実験時のもので、第17サイクル終了付近の実験時では、C電極値は5.8倍、Coは4.9倍に増大する。

図16はMK-Ⅱにおける冷却系内のC電極値の推移を示したものである。C電極値は最大量となっており、Coの約20～25倍となっている。MK-Ⅱ第2サイクル終了後の実験時のもので、第17サイクル終了付近の実験時では、C電極値は5.8倍、Coは4.9倍に増大する。
5.2 C P低減対策効果の評価

高圧力プラントにおけるCP低減対策の効果の評価を行った。核燃料処理においては(1)コールドトラップ低減化によるナトリウム中の酸素濃度の低減(2)長寿命核材中のCo不純物含有率の低減(3)制御棒及び同制御機構の検査・オフライン圧力下のコバールトリミング(4)C Pトラップの設置以上4項目である。このうち(1)は「常識」であり実験中であり、これまでの解析は「常識」での成否をベースとして行われている。③は現在実用化に先駆けて試験開発が進んでおり、従来のコバールトリミングが現状にアラーム再検を引き起こしているということではなく、あらかじめその危険性を抑制しておくためのものである。ここでは③と④の検査にについて述べる。

核燃料構成材中のCo不純物含有率の低減については、燃料核燃料材では既に0.01%が実質的に達成されている。ここではトラップ管についても燃料核燃料管を達成しておく場合について評価した。この場合60Coの発生係数は40%低減がするが、燃料核燃料の核質量低減化の効果はほとんど期待できない。これは既に説明したように60Coの核質量発生が1年程度と小さいためである。

実プラントにおいて最も有効な手段はCP低減対策はCPトラップの設置である。CPトラップは、ユッカルがナトリウム中に溶浴している34MnのCPに対して大きなベーター能力を有する103Coを利用するもので、ここでは核燃料核燃料管内に塗装されたCPトラップを全核燃料体の上に設置した場合の効果について評価した。図18に示すように34Mnと60Coの実効率には大きな違いがあり、34Mnでは小さいがワース・スルー効率(5%～9%)に対しても大きな実効効率(60%～70%)を期待できる。一方60Coでは、実効効率は既にワース・スルー効率に等しい。これに1次システム内でのCP低減の特性が依存しており、34Mnは脱落再循環性であるが60Coは一過性の挙動特性を有するためである。このためCPトラップの設置によってCP低減効果は34Mnで60%, 60Coで10%前後となる。34Mnは冷却核燃料内が蒸発を占めするものであるから、その低減化により核燃料も大々的に下り生産できる。

6. まとめ

これまでに達成された成果をまとめると次のようになる。

(1) ナトリウム中におけるCPの質量移行観察の役デジを統一的に再現できる「液解・浸透モデル」を作成し、解析法の構成及び解析パラメータの決定を行った。

(2) 高圧力プラント実機実験におけるCP挙動解析
コード（PSYCHE）を作成し、挙動・振舞面の一覧解析、評価及びシミュレーションを可能とした。
（3）「常温」実測値によりコード解析を行い、概ね妥当な結果が得られることを確認した。
（4）「常温」MK-II（17サイクル終了時）の予測解析によりラントの展開を明らかにした。
（5）CP低減対策効果の評価の結果実測での連続応答全体相関式のCPトラップの設計効果は大きく、特にMnの低減化に有効であり、稲稼率を半減できる見通しを得た。
今後の課題として次の事項が挙げられる。
（1）「常温」実測値の検証との対比により解析コードの信頼性向上を図る。
（2）「常温」MK-II、「しんじゅ」の検査低減対策評価に適用する。
（3）実証評価等の増加の計画等に適用し、低減低減

ラントの実用に資すること。

最後に本稿を終えるにあたり、関係各社に感謝の意を表します。我々が国におけるナトリウム中のCP
挙動研究の発展を支え、フレームワークを保全討論会の
関係者全員に感謝の意を表します。また本稿を共に長年に渡
り本研究に携わる多くの皆様のご尽力に感謝の意を表すること。

図18 CPトラップ実験装置の評価

<table>
<thead>
<tr>
<th>元素</th>
<th>変換値</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn</td>
<td>53</td>
</tr>
<tr>
<td>Co</td>
<td>14</td>
</tr>
<tr>
<td>Cr</td>
<td>8</td>
</tr>
<tr>
<td>Ni</td>
<td>12</td>
</tr>
<tr>
<td>積算値</td>
<td>53</td>
</tr>
</tbody>
</table>

参考文献
1）阪本、美林、一城、立野、「CP型におけるナトリウム中の中性子によるCP
実験装置の設計」、日本物理学会年次大会（1983）
2）佐藤、多田、永田、『MK-II、MKIII、MKIVと対比するCP
実験装置装置設計』、日本物理学会年次大会（1984）
3）石原、松本、前川、『実験装置装置設計』、日本物理学会年次大会
（1985）
4）南克喜、喜多、『ラントの実用に資すること』、日本物理学会年次大会
（1986）
5）小林、池田、石井、『CP型に対する実験装置装置設計』、日本物理学会
年次大会（1987）
6）玉井、村田、仁藤、『実験装置装置設計』、日本物理学会年次大会
（1988）

