「ふげん」の運転経験と技術成果
3. 燃料照射実績と照射特性

新型転換炉「ふげん」発電所
動力炉建設運転本部

資料番号：69-4

Fugen Operating Experience
3. Irradiation Performance of MOX Fuel of Fugen
Fugen Nuclear Power Station.
Reactor Construction and Operation Project.

「ふげん」の燃料集合体は円筒クラスター型であり、MOX 燃料およびUO₂燃料を使用している。現在までに385体のMOX燃料の照射実績があり、燃料破壊は発生していない。MOX燃料の照射挙動は、サイド照射および照射後挙動により設計どおり良好であることが確認され、これらの結果は燃料設計に反映している。

3. 燃料照射実績と照射特性
3.1 概要
「ふげん」は、MOX燃料集合体を本格的に使用しており、昭和63年12月末までのMOX燃料集合体の実質体数は385体、ウラン燃料集合体（UO₂燃料集合体）は362体に達している。これらの燃料の破壊および異常な変形は発生していない。

MOX燃料集合体の照射特性を確認し、燃料設計の安全裕度を評価するため、「ふげん」サイドにおいて水中燃料検査装置による燃料検査、日本原子力研究所の実用燃料試験施設および動力事業団大洗工学センター照射実験施設施設において照射後試験を実施している。照射特性はMOX燃料集合体とUO₂燃料集合体との差はなく、設計値を満足していることを確認している。

このように、「ふげん」ではMOX燃料集合体の良好な照射挙動を得るとともに、ATRのクラスター型燃料集合体の照射実績を得ている。

MOX燃料の原料であるプルトニウムは軽水炉および「ふげん」の使用燃料を後処理して回収されたプルトニウムを、またMOX燃料のベースウランには天然ウランおよび再処理によって得られた回収ウランを使用している。またUO₂燃料には図層堆積ウランも使用しており、燃料物質の有効利用。Pu利用技術の確立、核燃料サイクルの確立のため、重要な役割を果たしている。

また、ATR実証炉用燃料開発および高能効燃料ならびに高性能燃料の開発のための燃料集合体を模倣し、照射試験を行っている。
これらのMOX燃料の照射実績および照射特性を評価し燃料設計に反映するとともに、新型転換炉実証炉の燃料設計にも反映している。「ふげん」燃料集合体の照射実績と照射特性について次に示す。

3.2 燃料照射実績
(1) 燃料集合体の主要仕様および構造
「ふげん」に装荷されている標準燃料集合体（MOX燃料集合体、UO₂燃料集合体）、圧力管材材料照射用の特殊燃料集合体、ATR実証炉燃料の照射試験のための照射実用セグメント燃料集合体の主要仕様を図3-1に示す。また、標準燃料集合体および特殊燃料集合体の構造を図3-1に示す。

「ふげん」の標準燃料集合体は、燃料棒28本を3層クラスター状に束ねたもので、同心円状の内層、中間層および外層にそれぞれ4本、8本および8本の燃料棒が配置された円筒型である。燃料集合体は、上下部タイプレートおよび12個のスペースによって燃料棒間の間隙が保持され、中間層8本のタイロッ
<table>
<thead>
<tr>
<th>項目</th>
<th>核燃料 Compatibility</th>
<th>MOX タイプ A</th>
<th>特殊燃料 Compatibility</th>
<th>余剰燃料 Compatibility</th>
<th>余剰燃料 Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) ベレット</td>
<td>2 種類</td>
<td>厚さ 4.4 mm</td>
<td>厚さ 4.4 mm</td>
<td>厚さ 4.4 mm</td>
<td>厚さ 4.4 mm</td>
</tr>
<tr>
<td>外径</td>
<td>144.4 mm</td>
<td>144.4 mm</td>
<td>144.4 mm</td>
<td>144.4 mm</td>
<td></td>
</tr>
<tr>
<td>内径</td>
<td>126.8 mm</td>
<td>126.8 mm</td>
<td>126.8 mm</td>
<td>126.8 mm</td>
<td></td>
</tr>
<tr>
<td>(2) 材質</td>
<td>ロジウム</td>
<td>ロジウム</td>
<td>ロジウム</td>
<td>ロジウム</td>
<td></td>
</tr>
<tr>
<td>外径</td>
<td>144.4 mm</td>
<td>144.4 mm</td>
<td>144.4 mm</td>
<td>144.4 mm</td>
<td></td>
</tr>
<tr>
<td>内径</td>
<td>126.8 mm</td>
<td>126.8 mm</td>
<td>126.8 mm</td>
<td>126.8 mm</td>
<td></td>
</tr>
<tr>
<td>(3) H2</td>
<td>約 3.0 mm</td>
<td>約 3.0 mm</td>
<td>約 3.0 mm</td>
<td>約 3.0 mm</td>
<td></td>
</tr>
<tr>
<td>パラフィン</td>
<td>約 2.4 mm</td>
<td>約 2.4 mm</td>
<td>約 2.4 mm</td>
<td>約 2.4 mm</td>
<td></td>
</tr>
<tr>
<td>(4) 騒音</td>
<td>約 144.4 mm</td>
<td>約 144.4 mm</td>
<td>約 144.4 mm</td>
<td>約 144.4 mm</td>
<td></td>
</tr>
<tr>
<td>全長</td>
<td>約 114.8 mm</td>
<td>約 114.8 mm</td>
<td>約 114.8 mm</td>
<td>約 114.8 mm</td>
<td></td>
</tr>
<tr>
<td>(5) 燃料容積密度</td>
<td>約 144.4 mm</td>
<td>約 144.4 mm</td>
<td>約 144.4 mm</td>
<td>約 144.4 mm</td>
<td></td>
</tr>
<tr>
<td>網状</td>
<td>約 114.8 mm</td>
<td>約 114.8 mm</td>
<td>約 114.8 mm</td>
<td>約 114.8 mm</td>
<td></td>
</tr>
<tr>
<td>(6) 燃料容積密度</td>
<td>約 144.4 mm</td>
<td>約 144.4 mm</td>
<td>約 144.4 mm</td>
<td>約 144.4 mm</td>
<td></td>
</tr>
<tr>
<td>網状</td>
<td>約 114.8 mm</td>
<td>約 114.8 mm</td>
<td>約 114.8 mm</td>
<td>約 114.8 mm</td>
<td></td>
</tr>
</tbody>
</table>

1) 特殊燃料 Compatibility は内径の値。

図2-1 燃料集合体構造
ド燃料棒を上・下部タイプレートに固定して組み立てられる。12個のスペーサは、直径内の厚さの間に位置する4本のスパーサタイロードにより固定される。燃料棒は、燃料ペレットを殻管に挿入し、ヘリウムを1kg/cm²aで射入したものである。標準燃料棒合体にはMOC燃料集束体とUO₂燃料集束体があり、その仕様は燃料ペレットを除き同一である。

特殊燃料集束体は36本の燃料棒から構成され、内の異なる2種類の燃料棒が同心円に内層および外層にそれぞれ18本ずつ配列されている。燃料集束体中心部には芯内管を持ち、その中に圧力管材を盛試験槽を組み込んだ9個のキャプセルを持たす。芯内管は、下部タイプレートおよび12個のスペーサによって燃料棒相互の間隔を保たれ、外層に配置される6本のタイプレート燃料棒を上・下部タイプレートに固定して組み立てられる。12個のスペーサは、芯内管により固定される。

なお、「ふげん」燃料集束体には、タイプリA燃料集束体とタイプリB燃料集束体があり、タイプリB燃料集束体は燃料を温度上昇させるため、タイプリAに比べ、核分裂物質量を増加させており、構造は全く同じである。

MOC燃料集束体のプルトニウムは、初期には海外で抽出したものを使用していたが、製造加工は原子力発電所東京発電所で行っていた。第3回取扱いMOC燃料集束体は、東京発電所の再処理工場で燃料炉の使用済燃料集束体より抽出したプルトニウムを燃料集束体が開発したマイクロ波吸収倉庫に移って処理して使用している。

さらに、第12回取扱いMOC燃料集束体の一部には「ふげん」使用済MOC燃料集束体を再処理して抽出したプルトニウムを再使用している。

燃料炉の使用済燃料集束体より抽出されたプルトニウム同位体組成は、核分裂性Pu（Pu⁺⁴⁺Pu⁺⁴Pu）が70～75%で「ふげん」の使用済MOC燃料集束体からのそれは約65%と低い。これはプルトニウムのリサイクル効果であるが、ATRの場合、核分裂物質量（核分裂性PuとPu⁺⁴Puの和）を一定すれば、プルトニウム同位体組成にあまり影響されずに、ほぼ同一の燃焼度が得られるという特性があるので、燃料炉の再処理燃料から得られたプルトニウムと同様に使用することができる。

MOC燃料に使用するウランには、初期には天然ウランのみを使用していないが、第7回取扱いMOC燃料集束体から燃料炉の使用済燃料集束体から再処理して得られた同種ウランも使用している。

また、UO₂燃料集束体の熱幅ウランは初期には輸入していたが、第5回取扱いUO₂燃料集束体から人形市の焼却プラントで製造された濃縮ウランも使用している。

(2) 燃料取扱い実績

初期間開発では、炉心燃料集束体224体のうち96体のMOC燃料集束体を装荷した。その後の燃料取扱においても約半数はMOC燃料集束体を使用し、現在（第12回燃料取扱い後）では、炉心燃料集束体のうち半数以上がMOC燃料集束体である。これまでの燃料取扱い装置数は747体であり、そのうちMOC燃料集束体は385体で、UO₂燃料集束体の装荷総数を上回り、最全体燃料集束体の使用実績を多く数えている。

第3回燃料取扱い時からは、燃料の転換性向上の観点から燃料度を上げるために、核分裂物質量を初期の約1.5%（タイプリA燃料集束体）から約20%（タイプリB燃料集束体）に増加した燃料集束体の装荷を開始した。現在の燃料は、ほとんどタイプリB燃料集束体で構成されている。

「ふげん」は、定期停止時を含めて年2回の燃料取扱を行うことを原則としているが、12月の長期運転を除く観点から、第7回燃料開発（昭和59年6月～昭和61年7月）で76体の燃料取扱を行い、初装荷以来、昭和63年12月末までの通算安定出力換算運転日数（EFPD）は3,217日と進み、各燃料集束体変更後最大燃料度は、MOC燃料集束体が約18ミルリウッド/ℓ、タイトアが24,000MWD/ℓである。UO₂燃料集束体にあってはタイトアが37,300MWD/ℓ、タイトBが49,000MWD/ℓである。

これまで、燃料の破損および異常な形状が発生していない。

一方、炉心で照射され使用済となった燃料集束体は、これまでに593体に達したが、うち102体（昭和63年12月現在）については、使用済燃料転換容器（HIZ-75）を使用して、動力発電所東京発電所再処理工場へ輸送し、再処理されたMOC燃料から回収されたプルトニウムは「ふげん」のMOC燃料として第7回定期休止時（昭和63年）に装荷し、再利用されている。

さらに、2体については照射後試験のため、照射燃料転換容器（NISH-25）を使用して日本原子力研究所大崎研究所へ輸送した。

また、燃料炉の燃料器具および高濃度燃料ならびに高性能燃料の開発の一環として、次世代燃料集束体を装荷し、照射試験を実施している。

(1) 照射用36本燃料集束体（昭和60年12月、3体装荷）
実証燃料集合体とは同一寸法、構造の36本クラスタ型MOX燃料集合体で、目標最高燃焼度約35,000MWd/tnまで照射し設計性能を確認する。
(2) 防射用セグメント燃料集合体（昭和62年3月、2体試験）
原子炉の運転性の向上を目指した高性能燃料の開発のために、ジュルニウムウラン金属箔をパレット中心に貫通孔を設けた中空パレット等を組合せた試験用燃料モジュール（エクアメント燃料棒）を36本クラスタ型MOX燃料集合体に組み込み、「ふげん」において目標最高燃焼度約30,000 MWd/tnまで照射する。

3.3 燃料照射特性
(1) サイド検査
原子炉の運転中における燃料集合体破損の有無および燃料集合体の構造破壊を確認するため、使用燃料燃料棒部に設置した水中燃料検査装置等により、循環検査、外観検査、寸法検査等を実施している。

1) 循環検査
燃料集合体の破損の有無を確認するために、原子炉の運転中に定期的に蒸気から原子炉冷却水をサブプリングし、冷却水中のヨウ素をゲルマニウム半導体検出器を用いて測定している。また、必要に応じて原子炉停止後、燃料集合体が冷却されている開始燃料の放射能を測定している。燃料集合体の水準の放射能をサブプリングして、放射能強度を測定している。原子炉における発生水の放射能（I-131）強度は5×10^-1 μCi/g以下であり、これまで燃料集合体の破壊はない。

2) 外観検査
燃料集合体トウト移動および問題させて、上下パイプルの変形を把握し、観察するための観察状態および外観状態に、さらに燃料棒の外観状態を水中燃料検査装置のビデオカメラにより観察している。燃料棒は全面にわたってクラッドに覆われていたが、折損、変形の変化は認められていない。

クラッドの付着状態は、燃料集合体上部はジルカロイの光沢の確認できる程度に薄く付着しているだけであったが、中央部から下部にわたったり比較的厚いクラッドが付着していた。下部のスパンは、下部にクラッド付着がなかった。

クラッドの付着状態を表現するために、クラッド採取断面により燃料集合体に付着したクラッドを採取した。観察の結果、クラッドの形状は、主にα-FeO2（ヘタマイト）が80～90％を占めていた。

3) 防射性能
防射用セグメントの破壊を検査装置の測定結果を燃料棒に計測し測定した。測定結果は、炉心より取り出した燃料集合体において、首部の接続部に13発、後方後に20発を実施し、これで約60,000点の測定を行った。
燃料棒の各部は、運転日数の増加とともに変化を示している。これは燃料棒表面に付着したクラッドの影響によるものであるが、照射前後の変化が明確になかった。

燃料集合体停止
これにより測定したMOX燃料集合体、およびUO2燃料集合体について測定した燃料集合体の分布は、照射速度に比例して増加する傾向、その増加率は約0.6～0.9mm/GWD/tnであり、最大値においても設計予測値の範囲内であった。また、MOX燃料集合体とUO2燃料集合体との間の有無差異が認められていらない。

(2) 照射後試験
燃料集合体の照射による寸法変化および構成材料の機械的性質の変化ならびにMOX燃料ペレットの挙動を評価し、燃料設計コードの妥当性、設計精度、製造方法の妥当性等を確認するため、MOX燃料集合体の照射後試験を実施している。
照射後試験は、燃料棒の異なるMOX燃料集合体2体を日本原子力研究開発機構の放射性燃料試験室で実施している。試験は燃料集合体試験、燃料棒の非破壊試験および破壊試験、集合体部品試験を実施している。

また、照射後試験を実施した燃料棒の一部（燃料棒断面試験：長さ200mm×30mm、500mm×40mm、破壊管：長さ500mm×20mm）は、蝙蝠島燃料大洗工場センターより照射後試験施設に搬送し、MOX燃料の照射を必要とする場合に再利用するためのペレットの原料、使用性能、力学的性質を解析するためのテストデータとして、その結果を分析した。

1) 試験対象燃料集合体
照射実験は、第1回目のMOX タイプA燃料集合体（集合体番号PFPM06、以下「P06」という）、第2回目のMOX タイプB燃料集合体（集合体番号PFPM02R、以下「P2R」という）を対象とした。

平均要件度および炉内高さは、それぞれP06が約13,600MWd/tおよび234日、P2Rが約18,100MWd/tおよび1,063日である。また、経緯した最大放出力密度（ペレットピーク）はP06が約42kW/m、P2Rが約40kW/mであり、寿命末期の放出力密度は、P06が約24kW/m、P2Rが約28kW/mである。

2) 試験結果

(1) 燃料集合体

(2) P06、P2R燃料集合体について外観観察の結果、異常な変形、損傷などは認められず健全であることを確認した。

(3) 送電洗浄前後の燃料棒間ギャップから求めたクラッド付着層の最大で240μm程度であったが、このクラッドは赤褐色のFeOを主成分とするいわゆるソフトクラッドであり、破壊試験への熱的影響はほとんどないと考えられる。

(4) 燃料集合体の伸びは、燃料により増加する傾向があるが、設計で予測した範囲であった。燃料棒間平均ギャップは実験値とともに説明しているが、これは主にクラッドの付着によるものである。

(5) 燃料棒の外表面には、ノジュラ焼附、スペーサ焼結物等が認められたが、異常な腐食、損傷等は認められず、燃料棒の健全性を確認した。

(6) 燃料棒の伸びは、図2-3に示すように、燃焼に

![Graph](image-url)
伴って増加する傾向にあるが、SHERW および HBWR における「ふげん」燃料の先行照射試験結果ならびに被覆管として応力除去素材を使用している BWR 燃料のデータと同様の大きさおよび傾向であった。燃焼管内面は、予測どおり出力の高い燃料棒の中央部において、冷却材圧力による外圧グリップ減少が認められた。
(3) MOX 燃料の FP ガス放出率は、図3-3に示すように燃料とともに増加する傾向が認められ、その発熱度依存性および出力依存性ともに燃料に uranium 燃料と同様な応用を示した。
(4) ベレットは、温度勾配に伴う熱流束の差により発熱力が発生し、倒れが生じる。P06および P2R においても、典型的な傾向が観察された。また、結晶は燃料中の出力が比較的低い外層の燃料棒のベレット中心部に等温結晶成長が観察された。さらに P2R の外層燃料棒のベレット中央部に結晶結晶成長が観察された。
(5) ベレットのスラック長は、予測どおり急速に増加し、焼きにより減少しつつも減少している。
(6) 燃料棒表面には、BWR の燃料棒と同様に厚い燃料層が確認された。発熱度依存により求めたノジューラー発熱度は最大で 60mW 程度であり、BWR の燃料棒のデータと同様の範囲内である。
(1) 被覆管の耐力および引張強さを図3-4に示すように、中性子照射により増加することが観察される傾向にある。試験片は、実験において中性子照射による影響を低減する傾向があるが、343℃でのこの傾向は認められなかった。機械的性質は照射により変化するが、設計値を十分満足している。
(2) 燃料集合体部品
(3) ロッドスプリング、プレナムスプリングについて、外観検査の結果、折損等の異常は認められていなかった。

参考文献
1) 田村、山本： 原子炉燃料「ふげん」の燃料の設計及び燃焼、動力発電、No. 45 (1983)
2) 山本、植田：燃料サイクル体系 MOX 燃料の開発、新燃料開発委員会、No. 59 (1986)
3) 植田、上村：「ふげん」 MOX 燃料の燃料特性と使用環境、燃料技術 No.47 (1988)
4) 石原、大久保：高温炉型燃料材料開発の燃料供給状況、日本核燃料学会、Vol.23, No.2 (1987)
5) 上村、植田：燃料棒部品の燃料供給状況、日本核燃料学会、Vol.23, No.2 (1987)
8) 高柳、佐藤：高温炉型燃料材料 FP 燃料発電のKALINA 燃料発電を含むことにより、原子力工学、第104巻 7号 (1997)