プルトニウム燃料製造施設におけるNRTAの適用

山本 裕 高橋 三郎 三島 敏
青木 熊 山中 稔治 萩田 喜宏

東京電気協会プルトニウム燃料工業
* 核子システム部門

資料番号：80-6

多数の核物質を取り扱う施設では、保有情報より要求される速時性目標を達成させるために、中央在庫管理が毎月実施されている。プルトニウム燃料製造施設（以下「第三開発室」）では、実際のNRTA手法を適用することにより、施設状況への影響を最小限とした中央在庫管理が実施されている。NRTAでは、施設計量管理データを統計解析することにより、核物質の転用が要件を満たすことを確認している。NRTAは、これにより計画障害のデータのみで実施を確保するため、第三開発室のシステムを主体とした施設を実行している施設に合致した情報管理手段である。

1. はじめに

プルトニウム燃料製造施設（以下「第三開発室」）は、多量の核物質を取り扱う速時自動化された大型のMOX施設である。したがって、第三開発室では、実際における核物質への直接接触がきわめて困難であり、かつ実験時の核で核低レベル・核低レベルという観点から、従来ない新たな保有情報手法が導入されている。本稿は、世界で初めて実際の実務に適用された第三開発室でのNRTAについて、その要件を紹介するものである。

2. NRTAの概要

NRTA（Near Real Time Material Accountancy；近時時間物質収支管理）とは、施設計量管理データを基に、計量管理の計量値とMUP（在庫量：Material Unaccounted For）を比較することにより、核物質の転用を検知するものである。このNRTAを導入するためには、NRTA対象区域の受払い量、移動量および在庫量が計算機によりリアルタイムに把握できることが必要となる。

2.1 施設計量管理システム（AAS）

第三開発室は、従来のプルトニウム燃料製造施設に比べて多量の核物質を取り扱うことから、作業員の被ばく量を軽減するため、製造設備、搬运設備および保有設備などに高度な速時管理を導入している。そこで、設備の自動化に合致した新型計量管理システム（AAS：Advanced Accountancy System）を導入している。AASは、核物質の移動および在庫に関するすべての情報を一元的に集中管理しており、核物質の在庫、在庫量、プルトニウム含有量を含む詳細情報などを正確に把握できるように、以下の特徴を持っている。

(1) バルク核物質のアイム化：核物質の長方形は、AASに予め登録された粉末型容器、ペレット型容器等の専用の容器を用いてのみ行われる。この容器の内容が管理することにより、容易に核物質の正確な在庫量を移動の影響に伴う情報としても、容積ID（Identification）の管理により核物質の所在が把握できるようになっている。

(2) 物品コードおよび製造ロットの採用：燃料製造を承認していく過程で、核物質は様々な形状および
性状に変化していく。そこで、工藤の処理過程毎に物質コードを用いて、リアルタイムな化学的性状および物質的処理を把握することを可能としている。
また、製造の処理単位である製造ロットを計量管理に取り入れることにより、アルミニウム含有率などの性状情報を把握することが可能なものとしている。以上の管理により、AASは、NRTAに必要なすべての情報を保有しており、短時間の内にそのデータを出力し、提供することができるようになっている。

2.2 NRTA手法

NRTA区域の物質收支期間（MBP：Material Balance Period）において、MUFは次のような式で表わされる。

\[MUF = B1 + R - S - E1 \] \((1) \)

ここでB1（Beginning Inventory）は期首在庫量、R（Receipt）は受入量、S（Shipment）は出荷量、およびE1（Ending Inventory）は期末在庫量を表わしている。（1）式では右辺の各項目が測定値であるため、測定誤差が含まれておりMUFは0にならない。NRTA手法とは、MUFと測定値に含まれる測定誤差の期待値を比較することにより、物理的な各用がMUFの中に含まれていないかを調べる方法である。

NRTAにより出力されるグラフは3種類あり、出力グラフ例を図1に示す。

(1) MUF TEST：乾燥が無い場合の各MBPでのMUFの値は、平均が0の正規分布に従うので、MUFの値と計測誤差の期待値から一括振用を検知するのに適している。

(2) CUMUF TEST：各MBPについて、当該MBPを含めたそれ以前の全MBPでのMUF値を合計した量がCUMUF（累積MUF）である。したがって、長期に渡って大量振用が有ってもそれを著しくして拡大した形で示すことができる。

(3) GEMUF TEST：MUF（詳細は以下に記す）から計算される統計値で、急激な一括振用を検知するのに適している。

すべてのグラフで、MUF（グラフの実線）が測定誤差の期待値（グラフの点線）内に入っているならば、一括振用および少量振用の無いことが確認される。各MBPのMUFには傾向があり、複数のMBPのMUFをまとめた平均値を示す時期には、MUFの傾きを考慮に入らなければならず、あるMBPのMUFを求める時に、それ以前のMBPに測定したデータを用意したり、同じ測定器を用いていることなどにより、各MBPのMUFには当然ある傾向がでてくる。そこで、各MBPのMUFをより正確に評価するために、MUFに次のような処理を施している。最初にあるMBPに着目し、それ以前のMBPのMUFとの値の期待値をすべて求める。このようにして、MBP数(n)に応じてn×n個の値が得られる。この値から、MBP間のMUFの依存性が判る。これは、分散分析と呼ぶものである。次に、以前に発生した事実のMUFから、着目したMBPのMUFを、上記で求めた分散行列を用いて予測し、この予測したMUFを実際のMUFから引いたもの（残差MUF(MUFR)）を算出する。
MUFは、以前のMUFからの影響を取り除いたそのMBPのMUFであり、各MBPで独立な値をとり、かつ、最も閾値の期待値の小さい値となる。したがって、MUFおよび共分散行列から求めた誤差の期待値を比較することにより、偶然性に左右されないより正確なMUFの評価ができるようになる。

2.3 運用

NRTAは、現在図2に示すようにペレット製造工程および加工試験工場に適用され、AASにより作成された在庫および動的の情報を基に、毎月行われる在庫で科学技術庁およびIAEAにより、評価されている。

AASにて作成する在庫データおよび動的データは、主に以下の様な内容である。
(1) 在庫データ：各MBPのBIおよびBIとなるデータで、各測定点(KMP：Key Measurement Point)、Pu重さ、分析ID、計器番号などのデータを含む。
(2) 移動データ：各KMP間の移動データであり、RおよびSとなるデータで項目は在庫データと同じである。

NRTAでは、在庫および動的のデータによりMUFを算出する。また、各分析ID、計器番号に関しての誤差情報より、各機MBPの誤差の期待値を求める。それらの期待値を基にMUF、CUMUF、GEMUF等の統計値を行い、MUFの算出のための結果をリストおよびグラフで出力する。図3にデータの流れを示し、また、運用に関して、F/Dの情報は、従来の精密に検出している情報より詳細な情報であることから、F/Dは、特に取り出さないで、NRTAの最終結果のみ持続することが求められている。

3. 效果

差違では、中間その影響のために非線形性が0.5でサンプルが適切な検証が行われるもの、各NRTAの運用により、評価結果が良好な場合(MUFが誤差の期待値の範囲内)は、β = 0.8が採用され、検証サンプルが約1/3となる。このことは、施設要の影響および差違作業量が大幅に増加されることによって、差違の手数値において大きなメリットである。また、NRTAは、概念的に每月実在庫査定検証(FIV：Physical Inventory Verifica-
tion)に準ずる行為を行っていることに等しく、したがって、年1回実施されているクリーンアウトを伴うPIVを実施する必要がない。今後実験を積むことでいくことによって、PIVを廃止することが期待されている。

4. まとめ

第三開発課が自動化された大型施設であることから、施設の設計段階より施設管理を十分に考慮し、その1つとしてオンラインリアルタイムな施設管理管理システムを構築してきた。この施設システムの特徴を活用することによって、世界で初めてNRTAを実際の施設に適用することが可能となった。今後NRTAの信頼性をさらに向上させるために統計解析および確認評価手法等の検討を引き続き行うことが必要である。