放射線防護技術の概要

3. 放出管理技術

3.1 はじめに

事業団施設において発生する放射性廃棄物は、固化施設において貯蔵され、処理施設においては処理の過程に応じて分離、回収等の処理を行った後、その一部を環境中に放出している。

周辺環境への放射性廃棄物の放出管理は放射線管理の中で特に重要な項目の一つであり、放射性廃棄物については各施設の観点に応じて分離、回収等の処理を行った後、その一部を環境中に放出している。

本節では、事業団施設における放射性廃棄物の放出管理の特徴を紹介するとともに、これまでの技術開発の現状、放出実績等について記載する。

3.2 排気監視

3.2.1 管理基準

原子力施設の運転に伴って発生する放射性気体廃棄物を含む排気が、排出口に設置された排気モニタ等により連続あるいは定期間サンプリングにより放出基準を下回っていることを確認しつつ放出している。各施設の放射管理基準は、法令に定める周辺監視区域外の濃度基準等を満足する必要があることはもちろんでいるが、各施設の安全設計の結果も考慮して定められている。すなわち、気体廃棄物の排出口において、放射管理基準を下回っていることを確認することにより、放射の運輸に伴う周辺公害の総量の一部も放射量の総量の一部に含むことが可能である。第10条、第12条、第13条においては、放射性廃棄物の放射性汚染の放射環境は放射量値について行う。放射管理の放射管理基準を表3-1に示す。

表3-1 事業団施設における放射管理基準

<table>
<thead>
<tr>
<th>施設</th>
<th>基準</th>
<th>放出基準</th>
<th>1時間の最大放出量基準</th>
</tr>
</thead>
<tbody>
<tr>
<td>新たに設置された施設</td>
<td></td>
<td></td>
<td>6.5 × 10^4</td>
</tr>
<tr>
<td>北条</td>
<td></td>
<td></td>
<td>3.4 × 10^5</td>
</tr>
<tr>
<td>高遠</td>
<td></td>
<td></td>
<td>6.1 × 10^4</td>
</tr>
<tr>
<td>南部</td>
<td></td>
<td></td>
<td>1.0 × 10^4</td>
</tr>
</tbody>
</table>
3.2.2 監視、測定法

ふげん発電所、「常陽」等の原子炉施設において生成する放射性核種は、核分解により発生する核分裂生成物と原子炉内構造物等が放射化されて生成する放射化生成物の二つに大別できる。これらの中には、燃料素素燃や燃料内の保有されるが、ごく一部は燃焼状と呼ばれる放射系を含めて環境へ放出される。これら原子炉施設においては、ヘリウム、ヨウ素（39H、131I等）の放射性エネルギーのγ線を放射する核種を対象とした監視が必要となる。ふげん発電所では燃料素素燃や燃料の環境利用を主としているため、トリチウムの監視が重要となっている。

一方、再処理施設で処理する使用済燃料は、原子炉から取り出した後、沸腾炉内で半分以上冷却したものであるため、処理時に発生する放射物質中に含まれる核種は比較的長寿命でエネルギーの低い238U、239Puおよび232Thである。これら核種は主に、蒸気発電および核燃料物質の発生し、使用済燃料中に存在していた放射能のうち238U、239Pu、232Thは長期的に、238Uおよび239Puが核燃料中に移行した一部が環境中に放出されるため、これらの監視が必要となる。

これらの放射性物質の監視と測定は、原子炉施設および再処理施設とも基本的には同様であり、放射性核種、トリチウムランプ等を設置して放射能の度数および量を評価している。ここで、放射性の高い核種を放射する核種については、比較的容易に放射監視が可能であるが、エネルギーの低い核種を放射する核種あるいはβ線、α線を放射する核種の測定においては、放射性物質当量計等の化学物質の監視を含むため、核種の核種ののみを分離した後、適切な測定を行う必要がある。

再処理施設で使用されている放射性物質のシステム構成図は、図3-1に示すとおりであり、ガスモニタータイプ、輝光モニタータイプおよび浼水中の放射性物質が構成されている。放射性ガスはガラスセロロースろ紙等の精製装置に捕集され、α線ガスモニタおよびβ(γ)線ガスモニタにより放射監視されている。ヨウ素は活性炭を含む紙およびカーティットパックによ

![図3-1 再処理放射性物質のサンプリングシステム](image-url)

3.3 排水管理

3.3.1 管理基準

低濃度の放射線物質を含む排水は、放出パッチごとに放射管理基準を下回っていることを確認しつつ放出されている。各施設の放射管理基準は、放射監視の場合に同様、法令に定める周辺環境影響域内の濃度基準を満足するものであることが必要である。安全管理の結果を考慮して放射管理基準が定められている。放射管理の考え方についても、放射と同様、第1項に示す。ポスト検査施設における放射物質の監視は、放出管理により行われるもので、その影響のたびに効果を確認するためである。

発電所施設では、トリチウムおよび腐食生成物に対する管理が必要である。大気工学センターにおいては、セラミック中核燃料から一時排水系に直接排出される手洗い水等の放射性物質による放射監視を行い、腐食する日本原子力研究所大気研究所中央廃棄物処理場
表3-2 主な事例図表における排水管理基準

<table>
<thead>
<tr>
<th>用途</th>
<th>排水基盤</th>
<th>排水基準値（基準値）</th>
<th>排水基準値（基準値）</th>
</tr>
</thead>
<tbody>
<tr>
<td>大型航路</td>
<td>ふれん航路</td>
<td>3.0×10^4</td>
<td>5.0×10^4</td>
</tr>
<tr>
<td>小型航路</td>
<td>ふれん航路</td>
<td>1.0×10^4</td>
<td>2.0×10^4</td>
</tr>
<tr>
<td>河川流路</td>
<td>ふれん航路</td>
<td>0.3×10^4</td>
<td>0.5×10^4</td>
</tr>
</tbody>
</table>

3.3.2 監視・測定
排水分に放出される主な核種がふれん発電所や「常陽」等の原子炉施設では主に発生放出物であり、ウランの核種化揚経度ではウランおよびその核種核、再処理施設では核分裂生成物およびPu、プルトニウム燃料工場ではPuと廃水により異なることから、施設により運転状況も異なることから、放射管理においては水モニタによる運転測定や放射バッチ検の放射判定分析が核種の状況に合わせて実施されている。本報では「常陽」における水モニタによる管理と東海再処理施設におけるバッチ管理を紹介する。

『常陽』で発生する放射性廃液は、処理を実施した後、水質を確認して移送先にて原子力発電所の中央排水処理場を経由して海洋へ放出される。また、膜濃度が高いものは蒸発濃縮処理および蒸発廃液の蒸発処理を行って廃棄物処理場へ移送される。一方、廃水、一次冷却水、冷却水等の廃水は水モニタにより運転的に測定・管理して放射線測定値が高くなる東海再処理施設では、放射性廃液の管理が必要となる。水モニタには、計測精度のための優先的管理を含む「廃棄物管理」を実施している。

東海再処理施設で発生する低レベル放射性放射性廃液は、蒸発濃縮による化学的処理や接触空気による処理、活性炭による活性炭除去等の処理が行われた後、海洋放出管を介して3.7km冲に設置されている放射性廃液から放出される。廃液の放出にあたっては、放射能計数値としてからサンプリングした試料により放射バッチ毎に放射判定分析（全α放射能、全β放射能、γ放射能）を行い、その放射判定分析により放射基準値下であることが確認された処理能放射性廃水のみが海洋放出される。また、Sr、SrおよびPuについては、月平均値の放射性が放射基準値を超えないことを確認している。再処理施設からの放射排出においては、放射監視分析に係る時間が、廃棄物処理技術開発の進歩が著しく、放射能が安定に管理している。

3.4 放出管理結果の概要
各施設からの放出放射能は、いずれにおいても放射線度および放射はともに放射管理基準を下回っていることが確認されている。放射線基準に対する安全上の問題はない。

気体廃棄物の放出量のうち、原子炉基準から放出される内容が、これをこれまでの放射線発生量を、ふれん発電所および福井県に立地している発電所からの放射線基準値は、どの発電所においても放射性物質の放射線が著しく見られない。

一方、海水処理装置として放出される放射性廃液としては、放射性廃液から放出されるPuが半倉10^6～10^7 Bqのオーダーから他の放射性廃液や原子炉廃液と

図3-2 東海再処理施設およびサーフィールド再処理

施設からの放射性廃液
図3-3 東海再生処理施設およびセラフィールド再処理施設からの全μの海洋放出実績

図3-4 東海再生処理施設およびセラフィールド再処理施設からの全μの海洋放出実績

比べ大きな値となるが1年間の最大放出量（放出管理基準）の20％程度と十分小さく、また海洋放出により金鉛及び拡散されるため、公衆の線量基準としても、問題となるような事がない。

また、東海再生処理施設およびセラフィールド再処理施設からの全μ放射能および金μ放射能の放出実績は、図3-3および図3-4に示すとおり、40Krの放出実績が卓越を反映する程度であるとすれば、海洋放出実績は東海再生処理施設の放射能の低減化の技術の成果を示すものであると考えられる。

2.5 おわりに

本稿では事業団施設における放射管理技術の現状および放射能の間について記載した。放射および

水中に含まれる放射性物質の測定・監視は、公衆

の安全確認の観点として重要なものであり、再処

施設におけるリアルタイムのμ素観察技術の開

発さらにきめ細かい管理が行えるよう、今後とも技

術開発を進めていく。

（東海再生施設安全管理部　江森英一、林直義）

参考文献

1) 清水治彦、林直義、上原、小野寺、大関幸司、宮崎正人、鈴木雄一、野村英男、芝川敏之、藤本健夫

「放射性物質の放射トレーサーの研究」、「放射線学会論文集」「放射線学会論文集」1991年3月号

2) 福井勇「放射性物質の放射管理技術」、「環境政策」1991年3月号
