照射後試験施設のデコミッシュニング技術

1. まとめ

大気汚染センターの照射材料試験施設（以下MMFという）では、試験機および内装設備についての性能と高級化が著しい被覆管試験セル（α-γセル）のデコミッシュニングを実施した。セル内のすべての試験機および内装設備の更新、解体ならびに撤去後、内装の状態を保存した試験機および設備の配置を考慮し、照射後試験機能を向上したセルとして再使用するためである。本デコミッシュニングでは、ドライアイスシャレット法と電解研磨法による除染およびエアープラズマ研磨法による解体といった新たな技術を採用した。そのため、一連の予備試験を行った後、1993年4月よりセルのデコミッシュニングを開始し、1994年7月に終了した。本稿では、これらの除染技術に関する予備試験および被覆管試験セルへの適用結果について紹介する。

2. 被覆管試験セルの概要

被覆管試験セルでは、1973年から約20年間わたって、120Gwd/tの燃焼度まで照射された高度戦用燃料被覆管の強度試験、急速加熱パースト試験等の照射後試験が行われてきた。本セルは、厚さ1mの遮蔽用コンクリートで囲まれ、さらにその内部をステンレス鋼（厚さ3.0mm）でライニングされた気密タイプの構造である。

セル内の配置寸法は、7.500mm（幅）×3.200mm（奥行き）×4.200mm（高さ）であり、セル内容積に約10mの中型セルである。セルの前面には、遮蔽壁が3基、計5基と、セル前面側に排出用ポケット（300mm、100mm）が設けられており、また、セル背面前には遮蔽壁が設置されている。図1にセル内のデコミッシュニング前の試験機および設備機器の配置を示す。セル内の設置機器としては、マスタースレープ・マニブレータ（以下マニブレータという）6基（取扱荷重2,022kg）、走行および運行機能を有したインセンブルペレータ1基（定格荷重：1t）とパワーマニブレータ1基（最大取扱荷重：50kg）が設置されている。また、セル内には、急速加熱パースト試験機、パースト試験機、引抜試験機等の高温強度試験機が配置されている。

照射後試験では、燃料ピット中の燃料ベレットを被覆管内に設
2. セル内の汚染形態の調査

セル内の汚染形態は、污染核種が試験機の金属表面および内部に浸透した汚染形態、表面に固着した汚染形態および内部に固着・堆積した汚染形態の3つに分類される。高濃度で使用する試験機の一部は、金属表面に浸透または固着した汚染形態である。セルラインおよび設備機器は、表面に付着・堆積した遊離性の汚染形態であると推定される。そこで、特に金属表面内部に浸透または固着した汚染形態を評価するため、高濃度で使用する急速加熱バースト試験機の汚染の著しい電解部から試料を採取し、汚染形態の性状調査を実施した。

2.1 セル内の試験機および設備機器の配置図

図1 セル内の試験機および設備機器の配置図

図2 セル内の空間経過時間当量率の分布（デコメションニング前）
4. セル内の廃棄物処理計画

今回のデコミッションにおいて処理するセル内の試験検および設備機器の推定廃棄物のうち約90%が金属類（ステンレス鋼、炭素鋼、鉄）で、残る10%は、電子部品、電線ケーブルおよび金属以外の不燃物である。図4にデコミッションにおける廃棄物処理フローを示す。金属類の廃棄物は、エアープラズマ切断機または機械式切断機を用いて粗解体した後、高線量の部材は除染によるセル内への污染拡大が懸念されるため、細断断面高線量α固体廃棄物として直接搬出し、その他の廃棄物については一次除染としてドライアイスプラスト除染を行い、高線量α固体廃棄物と低線量α固体廃棄物との仕分けおよび約10cm角程度まで細断断面で、高線量α固体廃棄物については、
さらに二次除染として電解研磨除染を行い低レベル化処理を行った。それらの廃液は、金属容器の高濃度α固体廃液容器（5分割）に収納し、原研中央廃棄物処理場または減容処理が可能な廃棄物については固体廃棄物処理施設（WDF）へ搬出した。一方、低濃度α固体廃棄物は、ドラム缶形状で遮蔽用のコンクリートで鉛められた低濃度α固体廃棄物容器（D-50容器）に収納し、原研中央廃棄物処理場へ搬出した。

5. 除染・解体技術の開発

5.1 ドライアイスブラスト除染法

本手法は、ドライアイス粒（0.3mm×5〜8mm）を圧縮空気（0.6〜1.8Mpa）と混合して除染対象物に噴射（ブラスト）して除染するものである。研削剤としてのドライアイスは、ブラスト後に昇華するので、二次廃棄物が発生しない特徴がある。図5にセラミックの遠隔操作によるドライアイスブラスト除染システムの概念図を示す。

システムは、液体炭酸ガス喷射、ドライアイスブラスト装置本体（ドライアイス粒の製造および圧縮空気との混合を行う装置）、ブラストホース、ブラストノズルおよび空気バインダから構成される。なお、ドライアイスブラスト装置本体は、米国のコールドジェット社製（65〜100型）を使用した。本手法を実機に適用する場合の課題として、除染効率の評価、ブラスト噴射による放射性物質の飛散の抑制およびセル内での遠隔操作性の改善が必要である。

除染効率を評価するため、セル内の汚染物質として最も多くを占めている汚染物質を想定してステンレス鋼の表面にペイントを塗布した模擬試料（300mm×300mm）を製作しコールドでの除染試験を実施した。コールドでの性能確認試験で得られた単位時間当たりの除染面積とブラスト圧力、ブラスト距離の関係をそれぞれ図6および図7に示す。ここでの単位時間当たりの除染面積は、模擬試料のすべてのペイントが剥離するまでに要した時間より算出した。これらの結果を基に、最適なブラスト条件として、ブラスト圧力：1.7〜1.9Mpa、除染とブラストノズル間の距離：20〜40cm、ペレットフィード量（単位時間当たりのドライアイス粒量と圧縮空気との混合割合）：60%を選定した。また、セル内の試験槽から採取した試料を用いて、ブラスト除染による除染率を評価した。図8にドライアイスブラスト除染圧力と除染対象物の表面線量当量率の推移を示す。1面当たりのブラスト時間は約2分であり、30分で
図の続きに戻りプラストで絶対吸収率の低下は微細
する傾向を示した。また間隔を普通で消減し除
染を行った場合、ドライアイスプラスト法の除染
係数としては、プラスト対象物の形状および化学
形態により異なるものである。湿式除染の相対性
に対する、ドライアイスプラスト
除染法はきわめて有効であることを確認した。
プラストによる放射性物質の飛散は、セル内の汚染
拡大を引き起こすとともに、インウフィルター
（プレフィルター+高精度フィルター）の増設当
然が上昇しインウフィルターが高濃度で固体
廃棄物になることが懸念される。そのためプラスト
中の汚染物の飛散抑制対策として局所フード
（抑制排気半開放型フード）の使用および除染
対象物に塩酸制御剤を混ぜたプラスト法を
図9に示す。用いたプラスト beste装置において
検討した。それらの有効性を確認するための
コード試験を実施した。図9にドライアイスプ
ラスト時における作業（セル内の拡散）の粉
塵濃度測定結果を示す。試験は、遊離性の汚染形
態を模擬するためアルミウム（粒径 2～3 μm）
を2.0 mg添加した試験物をプラストし、プラ
スト中とプラスト停止後の作業室の放射線の推
移を測定した。試験条件として、作業室の換気
なしの場合、換気ありの場合とプラスト試料に塩
酸制御剤を添加した場合の条件について実施し
た。局所フードの使用およびプラスト前除染対
象物表面への塩酸制御剤の塗布が、汚染物の飛散
抑制効果があることが明らかになった。

ドライアイスプラスト法は実機での除染に適用
することにより、安全性の観点から、プラスト
ホース内の気体の流速の設定の追加および
セル内の絶対値の空気のセル内への濁流防止の
ためのインターロック機構の追加を行った。また

プラストノズルと除染対象物の保持治具を製作す
ることにより、マニフレータによる遮断操作を
可能とした。

5.2 電解液脱染法

電解液脱染法は、ドライアイスプラストによる
一次除染を行った後、さらに表面に残留している汚染
物を除去し塩酸当量を低減するための二次除染
法として適用した。本手法は、被処理物を入れる
洗浄槽を構成、電解槽自体を除極として両極間に
通電し、被処理物と表面の腐食性を溶解すること
により除染を行うものである。

電解研磨装置の使用に伴い個体除去した金属廃棄物の
低レベル化処理のための方法として本手法は脱染系電解
研磨装置と、セルライニング等の移動できない
部分の塩酸当量の低減を行うための可動塩酸
式電解研磨装置を開発、これらについて遮断作
が可能であるに製作した。浸没式電解研磨装置
の構造は、直流電源装置、内部の電解槽および
電解槽（網状型）より構成される。一方、可動塩酸
式電解研磨装置の構造は、直流電源装置、特殊浸
没電解装置、可動塩酸電解および特殊塩酸塩
から構成される。図10に可動塩酸式電解研磨法
の概念図を示す。可動塩酸式電解研磨装置
は、可動塩の特殊塩酸塩に電解研磨液を浸漬
させ、被処理物を表面の塩酸塩を薄く塗り取ること
により除去するものである。

電解研磨法による除染は、一般的に用いられている
技術ではあるが、設備が大型であること、二
次廃棄物（電解研磨廃棄液および洗浄液）が多
量に発生する等の問題があり、本手法を実機に適用
す場の課題として、除染効果の評価、放射
図10 可動型極式電解研磨装置の概念図

図11 電解研磨液の溶解特性（コールド試験）

図12 可動型極式電解研磨装置における研磨時間と

研磨量の関係（コールド試験）

性質が抑制される。さらに電解研磨液の溶解能力向上、
研磨効率および連続操作性の改良が必要である。

除塩効果の評価および電解研磨液の溶解能力の
向上に関わるしては、研究を望み、実験には、溶
解能力の高い弱酸性タイプ（リン酸系）の研磨液
を、また可動型極式には、金属母材でのダメージ
がない中性塩タイプの電解研磨液を用いた。図11に
示すように、得られる各電解研磨液によるステンレス鋼の溶解特性を示した。可動型極式電解研磨液は、従来の研磨液に比べ1.6大一の
溶解量を約30%向上させることがわたった。また、
可動型極式の研磨液については、セラビニング
の腐食によるダメージを抑えるとともに、溶出した
汚染物の腐食表面への再付着を抑制した強力な浸
透力の優れた電解研磨液とした。図12に可動型極式電
解研磨装置における研磨時間と研磨量の関係を
示す。実験結果の評価結果から母材内部に浸透し
ている汚染物の深さは、約0.6μm程度であるこ
とがわかった。5分間の研磨時間で強固な浸
透汚染に対する十分低レベル化処理が可能であ
ることが明らかになった。

研磨に使用した電解研磨液の処理は、浸透式
電解研磨に使用する強酸性タイプの液について

は溶出物により中和処理処理し、また、可動型極
式電解研磨に使用する中性タイプの研磨液について
は、ポルトランドセメントで固化処理するため、そ
れぞれの固化条件をコールド試験にて確認した。

5.3 エアープラズマ切削法

エアープラズマ切削法は、従来の（金属）と
トーチ間にプラズマを発生させ、プラズマアーク
により溶融した金属を圧縮空気によって吹き飛ば
すことによって切削を行うものである。本方法は、
機械式切断に比較して切削時間がきわめて短い
利点がある。切削方法は、小型の電解部とトーチ
部（トーチケーブルも含む）で構成される。今回
適用する装置は、セレで切削帯を所定の寸法を
考慮して、一般工具として用いられている切断
機を採用した。その切断性能は、炭素鋼で40μm
厚さ、切断速度で150mm/min（厚さ10mm）
を有する。

本手法を実機に適用する場合の課題としては、
切断時に発生するヒューム（0.1～3μmの微粒子）
がセラーラの精密加工に使用している高性能
フィルターの目詰まりを加速させることが懸念さ
るため、ヒューム除去法が必要であり、また冷却術が
また並行操作性の改善も必要である。

ヒューム除去方法として、高性能フィルターの
前段に冷却冷却およびフィルターを設置し捕集
することが有効である。しかしながら、その場合フィル
ターの過充により排気系の圧力損失が問題となる
ため、コールド試験により圧力損失確認試験を実施
した。図13に捕集長さ（切断時に発生するヒューム
コンポーネント）と高圧力制御フィルターの圧力損失比率の
関係を示す。試験は、板厚10mmの炭素鋼を用
時間の制限、局所フードの使用、耐火シートの使用、耐火服の着用等を徹底し、その有効性をミックアップ試験で確認した。

8. 被覆管試験セルのデコミッショニング方法
図14に被覆管試験セルのデコミッショニングのフローを示す。
デコミッショニングの最終的なセル内の線量当量率が東京電力の基準および基準値を、0.05 mSv/h以下、4 Bq/cm²（β-γ）とした。上記値を目標値に、従来の作業方法によりデコミッショニング後の新たな試験段階および設備構成の設置作業に対する作業挙動法の検討を進め、低減の観点から対策を計画した。と考えられるものである。

デコミッショニングの前準備作業として、セル内の線量当量率の把握、高濃度汚染物の除去、高濃度汚染物の抜去および隔離処理を行い、被覆低減対策を実施した後、ドライアイスブロスト除染処理、間接容器処理およびシアーブラズマ切断機をセル内に設置し、これらを用いて隔離作業による試験機および設備構成の検査・解体を行った。セル内から発生する高濃度放射能含有汚染物体は、低レベル化処理を行うことにより高濃度汚染物体の低減を図った。これにより、セル内の線量当量率が低くなった時点でセル内へ入り、除染・解体を行った。セル内への立ち入り時の作業には、セル管面側に設置されているフロッグマン設備を使用して行い、セル内の空気汚染濃度の低下に合わせて防護仕様を大洗浄工学センタ
ター放射線作業計測書・報告書作成手引に従い、フレックス装置、エアーラインマスク装置、全面マスク装置を随時変更した作業を進めた。

セール中の試験機および設備機器のすべてを除染・解体および搬出してセールから搬出した後に、再度ドライアイスプラスト除染によるセールライングを全面除染と空冷制御装置による除染を交互に繰り返し、最終的に試験・除染を行ってセルのデコッショニングを完了した。

7. デコッショニング結果
7.1 ドライアイスプラスト除染実験
ドライアイスプラスト除染は、セル内より搬出する廃棄物の一次除染およびセールライングの除染に使用した。表1にドライアイスプラスト除染法の実施時期と評価試験時の除染試験で得られた検査値から求めた除染係数を示す。実施した除染係数の評価は、被服性の污染度数と固形物の汚染度数の廃棄物についてプラスト除染を行い、セール内部に接着されているボックス等を移動して検査値を測定することにより行った。実施時の除染係数は、評価試験時より高い結果になったが、この基盤としては、被服用の中で形状が複雑であったこと、一度のプラスト除染であったことおよびセル内での汚染物の再付着が影響していると考えられる。また、表2にドライアイスプラスト除染について（一部被服を除染を含む）、セールライング後の表面密閉試験値から求めた除染係数を示す。セールライングのような平滑な面でかつ被服性の汚染度数に対しては、きわめて高い除染効果を有することを確認した。写真1にセル内のドライアイスプラストによる除染作業の様子を示す。

表1 ドライアイスプラスト除染における除染係数
（検査値当量率）

<table>
<thead>
<tr>
<th>検査値</th>
<th>評価試験時の除染係数</th>
<th>実施時の除染係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>付着した汚染物数</td>
<td>1.4～1.9</td>
<td>1.8～4.3</td>
</tr>
<tr>
<td>液状化された汚染物数</td>
<td>2.5～8.7</td>
<td>1.3～1.5</td>
</tr>
</tbody>
</table>

表2 ドライアイスプラスト除染における除染係数
（表面密閉）

<table>
<thead>
<tr>
<th>サンプル場所</th>
<th>初期密閉性試験値（S/m）</th>
<th>検査値/Ma試験値（S/m）</th>
<th>除染係数（DF）</th>
</tr>
</thead>
<tbody>
<tr>
<td>セールライング試験機（W1）</td>
<td>176</td>
<td>0.1</td>
<td>176</td>
</tr>
<tr>
<td>セールライング試験機（W2）</td>
<td>56</td>
<td>0.1</td>
<td>56</td>
</tr>
</tbody>
</table>

7.2 電解研磨除染実験
セールライングの床面の腐食の腐食当量率の高い部分について、可動式電解研磨装置を使用した遮蔽操作による除染を実施した。可動式電解研磨装置で電解研磨実験で使用した電解研磨液については、電解研磨液の乾燥オイルおよび浮遊オイルによる取り扱い処理したため覆被の発生はなかった。可動式電解研磨装置による除染係数を求めると、セル内の污染物の一部を同施設内のフラードに移動し汚染物の再付着を管理して除染試験を行った結果、除染係数として60～100が得られた。図15に可動式電解研磨装置における腐食当量率の推移を示す。約5分の洗浄で腐食当量率は約0.02S/m程度まで低減でき、除染を達成することにより除染係数はさらに向上する見通しが得られた。

本方法により、図中された汚染物についても低レベル化処理が十分可能であることが明らかになった。

7.3 エアープラズマ切断実験
エアープラズマ切断は、試験機および大型設備機器の解体作業に使用した。本方法は、マニプレータによる遮蔽操作で実施でき、機械式切断では解体が不可能な部分の切断も可能となり、大型機械の切断に威力を発揮した。切断時に、遮蔽機材付属のフラードの遮蔽率をインセル
フィルターの前段に不織布フィルターを設置することで、セル内に設置されている高性能フィルターの目詰まりを抑圧して寿命を延長させることができた。写真2にセル内における遠隔操作によるプラズマ切断作業の様子を示す。デコマシキング作業開始中にインセルフィルターの精度不良の上昇がなかったことから、切断時に発生するヒュームによるセル内への汚染拡大はきわめて少ないことが明らかになった。

8. おわりに

セル内のすべての試験機および設備機器を除染・解体および装置装置を完了することができた。図16にデコマシキングを完了した後の最終的なセル内空間線量当量率分布図を示す。W-1室側の床ドアライン配管の一部を除いて、ほぼ当初の目標値の0.05μSv/h以下で低減することができた。セル全体の線量当量からの除染係数は約10^2^から10^3^である。また、セルライニング床の表面密度についても、約0.4Bq/cm^2^（β-γ）および0.03Bq/cm^2^（α-γ）まで低減することができた。

デコマシキングを除染法と電解研磨除染法を併用してデコマシキングを行うことにより、セル内の線量当量率の約90%以上を11レベル化処理することができた。また、今回適用したデコマシング手法は、遠隔操作による除染が可能であり、作業きずのある被ばく低減ならびにデコマシングで生じる二次物質の低減にきわめて有効な手法であることが実証された。

今後動態事業団内の核燃料設施の再整備ならびに当初の目的を達成したホットセルの撤去のためのデコマシング等に今回述べたデコマシングで得られた知識が活用されることを期待する。

本デコマシング技術開発に際して、ライオンプラズマ除去法の性能確認試験にご協力を戴いた昭和急酸株式、電解研磨除染法の性能試験および装置開発にご協力を戴いたケミカル株式、山本正崇氏に感謝の意を表します。また、本デコマシングで得られたデータの整理にご協力を戴いたRANDEC株式正治氏に感謝の意を表します。さらに、検査開発課の遠藤敏彦氏、鈴木勉雅氏、高橋好喜氏には、予備試験およびデコマシング作業に協力を戴いたことを付記し、ここに感謝の意を表します。

参考文献
1）高橋正：新たな除染手法を用いたヨーロッパのデコマシキングRANDECニュースNo1（1994.11）
2）秋田信：Decontamination and Modification of Alpha-Gamma
Hot Cell in the Material Monitoring Facility ICONE-3.