用して推定している。「LYNX」は試験孔のウンラ
ン品位データに基づいて堆積ウラン量を計算す
る。計算方法としては多角形法、地球統計法、概
算の関数法が可能である。計算結果はウラン品位
またはウラン量分布面・平面図として表示され、鉱
山設計の基礎資料となる。
b) 鉱山設計
鉱床の形態などの探査情報から最適な採鉱法を
選定するエキスパートシステムである「採鉱設計
支援システム」を開発した。
また、インシチュ・リーチング (ISL) 鉱山の
効率的な生産方法及び地下水環境被害防止等を
考慮した鉱山評価の基礎資料となる「インシチュ
・リーチング鉱山ハンドブック」を作成している。

c) 鉱山生産コスト試算
採鉱コスト計算プログラム（SHERPA）を
保有している。
このプログラムを活用するための必要なデータ
が揃っていない鉱山の評価用に、これを独自に改
良し、鉱山建設費、操業費、収支計算ができる鉱山
開発・生産コスト試算プログラムを作成し運用し
ている。また、米国鉱山局の「Cost and Sensitivities
Analysis for Uranium in Site Leach Mining」に基
づいた、ISLコスト計算プログラムを作成し運用し
ている。

d) 鉱床経済性試算
鉱山生産コスト試算の結果や、収集した規制等
の情報、及びウラン価格予測に基づいて、鉱山の
開発・生産経済性試算を行っている。
カナダ、米国、オーストラリア、アフリカなど
でのプロジェクトの予備的鉱床経済性評価を行
っている。

4) データベース
a) 資源情報関係データベース
「ウラントピック」（動態事業団資源情報）、「ウラン
今日と明日」（海外ウラン鉱業情報抄録）、「ウラン鉱
山便覧」を登録している。すべての登録文書からのキーワードによる関連情報検索機能を付加している。
b) 技術関係データベース
鉱床、地質図、航空写真、衛星画像、物理探査
解析図、地学探査解析図、試鉱データなどの探
査データを保有。これらは順次GISに収納する予
定である。
①地理情報システム（GIS）
地理情報システム（GIS）は地球座標システムに
基づいて探査データを数値化、演算処理し、その結
果を地図情報として画像表示するコンピュータ
システムである。動態事業団は探査結果を統合化
して解析するために、他社に先駆けて導入して探
査データの数値化・解析手法の検討を進めてお
り、資源量評価にもこれを利用している。
なお、以上の調査探鉱プロジェクトの成果や資
源情報・探鉱技術の具体的例については、その探
査実例（不整合関連型の潜頭鉱床）における探査手
法の適用やその高度化、あるいは、ポテンシャル
解析（資源量評価、探査データの総合的評価手法
への取り組み）の現状等として、次の6.6.8章に
詳述する。

6. 潜頭鉱床を対象とした最新の探査技術
一カナダ北西準州アンドリューレイク鉱床の
発見を例に一

6.1 ウラン探査の特徴とその変遷
(1) これまでのウラン探査の特徴
ウラン鉱床の探査というと、まず放射能探査の
適用が考えられる。携帯用のガイガーカウンター
やシンチレーションカウンターを持って野を歩
き回り、岩石から放射される自然放射線を測定す
ることである。
ウランの探査用、石油用、銅などの地下資源
の探査も、基本的には同じだが、ウランの場合、
その歴史が短いことが、ほかの資源の探査と異な
っている（ほとんどの有用金属の探査が古代から
行われてきたのに対して、ウランの探査が始ま
ってからは、たかだか50年しか経っていない）。し
かし、歴史が短くから探査が進んでいないかとい
うと、実はそうではない。それは、放射能探査が
非常に有効な手法で、肉眼では見分けるいっぱい
なウランの鉱物やウラン酸化作用を観察してい
きもって有効に発見できたからである。ウランと
その硫黄素の放射能を持っていることがウラン元
素の大きな特徴であり、そのために、放射能探査が
ウラン探査においてこれまで広く活用されている。
放射能探査といっても、放射能を帯びて調査を行
うのではなく、大地から放射される放射線を測定す
るべきである。したがって、誤解を避けるためにお
は、放射線探査と呼ばんだほうがよい。
しかし、ウラン探査の方法は近年著しく変貌し
た。もはや放射線探査はウラン探査の主力でなくな
っている。
(2) 潜頭鉱床の探査
暗かに放射線探査はウラン鉱床の発見に成功
した探査法はない。しかし、放射線（γ線）は、
岩の中央を5cmほど通り抜ける間にほとんど吸収
されててしまうため、地下の鉱床から発される放射線は地上では検知されない。放射線探査では、地球の表面に露出しているようなウラン鉱床しか捉えることができない。

そのようなウラン鉱床を、『露頭鉱床』と呼ぶのが、これに対して、鉱床が地上に露出していないものの、地表には発見の手がかりがないような鉱床を『潜鉱鉱床』という。

1960年代後半からは、高感度の放射線測定装置を航空機に搭載したものが使われるようになった。これを空中放射線探査またはエアポーション放射線探査という（図10）。これによって、広い範囲をきわめて効率的に探査できるようになり、その結果、ウラン探査の活発だった1960年代末から1970年代初めにかけて多くのウラン鉱床が発見された。

ところがその後、放射線探査で見つかるべきものは見つからなかった。1980年（昭和55年）以降は、新たなウラン鉱床の発見は2件にとどまっている。世界中のウランの鉱床発見数が1件にとどまったわけではない。非常に少なくとなっていることは確かである。放射線探査による鉱床発見事例の推移を概観的に描くと、図11のようになる。

鉱床発見に代わって潜鉱鉱床が探査の対象となったのは、地理によって違いがあるが、だいたい1980年代からである。露頭鉱床に比べ、潜鉱鉱床を探すことは格段に難しい。それ以降、ウラン探査の主役を務めるようになったのは、放射線探査に代わって、電磁探査等である（図12）。

潜鉱鉱床の探査手法の一例を図13に示す。この例のように、複数の方法を使って、段階的に有望地を絞り込んでいくことになる。放射線探査は世界中どこでも同じ手法が適用できたが、潜鉱鉱床の探査とは、地域ごとに有効な方法と手順が違う。鉱床探査の特徴（周囲の岩石とは異なる性質）を活かすので探査されるのが潜鉱鉱床の探し方だが、その地質の特徴にパラエティーがあるので、同じ手法・手順でどこでも通用するわけはないからである。カナダのある地域で成功した方法をそのままオーストラリアで適用してもうまくいくとは限らない。

このように、露頭鉱床の探査と潜鉱鉱床の探査
とでは、ずいぶん性格が違っている。その違いを図14に示す。露頭鉱床の探査では、機動力や情報をなるための情報収集の役割が非常に重要である。他社に先んじて情報を提供したり、他社の活動の状況を確認することが、主要な情報収集の一部をする。また、探査の手法は動用効率の良い放射線探査で、探査のやり方はルーチン的となる。有効な地域を求めて非常に広い範囲を調査するのが特徴で、探査員は世界中の人類狭い荒野を飛び回ることとなる。軍事的、軍事的で、ならばない印象を与えるかもしれない。

一方、構造鉱床の探査には、有用な情報の深いとでいただくための工夫が必要となる。有効な手法・手順を確立することは、取得したデータから意味のある情報を引き出すための分野も持たなくてはならないし、創造力も必要となる。また、可能性のある手法を実際に試してみることが不可欠である。もう一つは試行錯誤をすることになる。一旦確立された方法、それが有効するのは各々の地質的な環境から、一つの地域に限定されるので、別の地域では、そこで合ったやり方を築き上げていくわけではない。露頭鉱床の探査に比べると狭い地域の中で、ここつと方策をすることになり、研究的で地味な感じとなる。

6.2 カナダ・シーク侖盆地での地質鉱床の探査例

動植事業団は、ウランゲルシャフト社（UG）などの企業と共同で、1965年（昭和51年）からカナダ北西枝のシーク侓盆地東部で探査に取り組んできた。その後、地質鉱床の探査手法を確立し、鉱床発見の成果をあげてきた。その概要をアンドリューライト鉱床の発見を中心に紹介する。

(1) 探査地域の概要

探査地域は北緯45度、西経98度付近に位置す
表5 シーンゾン盆地東部地域の探査年表

<table>
<thead>
<tr>
<th>年</th>
<th>活動</th>
<th>時代区分</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>丑ヶ崎により探査開始</td>
<td>丑ヶ崎鉱床時代</td>
</tr>
<tr>
<td>1977</td>
<td>キガヴィック鉱床発見</td>
<td>キガヴィック鉱床時代</td>
</tr>
<tr>
<td>1981-83</td>
<td>探査活動</td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>シーンゾン盆地とシェルツレイク地域に核動力堆積密閉施設設立</td>
<td>シーンゾン地域時代</td>
</tr>
<tr>
<td>1987</td>
<td>シーンゾン地域での探査活動</td>
<td>シーンゾン地域時代</td>
</tr>
<tr>
<td>1990</td>
<td>アンドリューレイク鉱床発見</td>
<td>アンドリューレイク鉱床時代</td>
</tr>
<tr>
<td>1993</td>
<td>シーンゾン地域での探査活動</td>
<td>シーンゾン地域時代</td>
</tr>
<tr>
<td>1995</td>
<td>シーンゾン地域での探査活動</td>
<td>シーンゾン地域時代</td>
</tr>
</tbody>
</table>

表6 シーンゾン盆地東部地域の主な探査プロジェクト（1986年当時）

<table>
<thead>
<tr>
<th>プロジェクト名</th>
<th>参加企業</th>
<th>検出率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>キガヴィック</td>
<td>UG (株)</td>
<td>70</td>
</tr>
<tr>
<td>93% (株)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>シーンゾン</td>
<td>UGS (株)</td>
<td>50</td>
</tr>
<tr>
<td>NSC (株)</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>シェルツレイク</td>
<td>PNC (株)</td>
<td>50</td>
</tr>
<tr>
<td>NCH (株)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>シーンゾン・シェルツレイク</td>
<td>UG (株)</td>
<td>100</td>
</tr>
<tr>
<td>93% (株)</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

このタイプの鉱床は、ウラン量が多く、品位が高いために注視されている。

(2) 鉱業権の概要と探査の歴史

このシーンゾン地域でのウラン探査はUG社によって1974年（昭和49年）に開始されている。放射線探査により、キガヴィック鉱床（旧名、ロンガル鉱床）という鉱床が1977年（昭和52年）に発見された（図5）。

鉱業活動は、1986年（昭和61年）にこの地域に参入した。有効地域はすでにUG社などによって探査されており、それらの先行企業との共同調査（ジョイントベンチャー）を形成した。当時の鉱業権の取得状況を図17に、探査プロジェクトの企画状況を表5に示す。

鉱業活動がこの地域に参入した頃は、ちょうど探査の対象が低酸鉱床から高酸鉱床へと移行する時期にあたり、高酸鉱床の探査方法がUG社により研究されてきた。すでにUG社は、鉱床とその近傍の変質した岩石が周囲の岩石に比べて電気伝導性がよく（電気伝導度が低い）、速度も低いことが知られ、その特質を発揮するための手法を導入を始めていた。

図17 鉱業権位置図（1986年当時）

動機を実際の探査計画に組み込むことによって、広い範囲において探査を効率的に進めることが可能となった。その結果、1988年（昭和63年）にアンドリューレイク鉱床が発見されることがどうした。この鉱床は、地表には鉱床発見の手がかりの全くない、典型的な絶頂鉱床であった。

その後の調査の結果、アンドリューレイク鉱床の詳細が明らかになることにより、新たな鉱床が追加発見された。このようにして、地域全体が世界的なウラン鉱床帯に発展することになった。

(3) ウラン電磁探査

この探査に使用した測定装置は、ディジェム（DIGHEM）という空磁探査測定の専門会社が当時新しく発売したシステムで、DIGHEMIVというユニットである。

この地域は永久凍土帯のためもあり、電磁波の流れにくい地層が広がっている（岩石が結晶化すると、より電磁波が流れにくくなる）。このため、ベルボーラン電磁探査システムでは、電磁伝導度が低い低い岩石（比抵抗の高い岩石）に対応する能力が必要されることとなった。DIGHEMIVでは、この種の測定機器としては初めて56,000ベルツという高い測定数が使用でき、20,000mまでの高い
比抵抗をもつ岩石の（間接）測定が可能となり、本地域に最も適したシステムであると考えられた。

DIGHEM IV は、周波数領域電磁探査と呼ばれものの一種であり、送信コイルと受信コイルを内蔵したロケットのように形をした大型の装置（ブーム）をヘリコプターに約引下げて測定する形式のものである（図 18）。送信周波数は900、7200、56,000ヘルツの 3 つが使われるが、テスター調査の結果、調査地域では岩石の比抵抗が高く、900ヘルツの応答が微弱なことが確認されたので、以後は7,200及び56,000ヘルツの 2 つを用いている。測定深度は30mである。

電磁探査は次のようないく方法である。すなわち、送信コイル（ブーム）に電流を流すと磁場が発生する。変流を変化させると磁場が変化する。この磁場の変化によって、地下に誘導電流（漏電流）が生されることになる。すると、この地下の誘導電流が磁場を誘起する（これを二次磁場という。）この二次磁場の変化を受信コイルで検出する。地下の岩石の電導性が良いほど二次磁場が弱くなる。

電磁探査は簡単にえば、電磁誘導を利用して地下の電気の流れやすさを推定する方法といえ。測定データから（ある仮定をもらうと）大地の比抵抗が計算できる（このように間接的に測定された比抵抗を見かけ比抵抗という）。ヘリコプターをテレビの走査線のようににして、調査地域をくまなく飛ばし、そのデータを処理して見かけ比抵抗分布図を描くことができる。通常そのような分布図が探査に利用されるので、ヘリポーン比抵抗探査とも呼ばれる。

(4) VLF—MT探査

エアボーン電磁探査で検出された低比抵抗異常を地上で確認するために、VLF比抵抗探査を用いる。この方法は、VLF帯（極低周波数帯）の通信用電波を利用して、地磁気電流法（MT法）の測定原理により、測点と発信局を結ぶ方向の水平電場とそれに直交する方向の磁場を測定するで、大地の見かけ比抵抗を現場で直接読み取ることができる。VLF帯の電波は、シーロン地域では、アメリカ西海岸と東海岸にある 2 つの発信局からのものを利用することができる。空中電磁探査で得られたほとんどのすべての低比抵抗異常（湖は除く）は、VLF—MT探査によって確認された。本手法は機器が小型で、測定も簡便迅速なため、効率的に広範囲を探査できることが最大の利点である。

(5) 重力探査

岩石は種類によって密度が異なる。例えば、花崗岩（みかげ石）の密度は約2.6g/ccだが、はんれい岩（黒みかげ）は3.0g/cc程度である。また、軽石のようにきき間の多い石の密度は小さい。密度の大きい、重い岩石のかたまり（岩体）が地下にあると、通常より地上的重力がわずかに大きくなる。逆に、密度の低い、軽い岩体の場合は、地上的重力は小さくなる。

このような重力の違いはとてもわくかなので、人間がその違いを体で感じとることはできない。重力は、水晶のパネを利用して測定装置によって精密に計ることができる。そのような重力計は地上的重力の1億分の1の違いを測定できる精度をもっている。

調査地域の鉱床近傍の岩石は、変質して密度が低くなっている。これとは、熱水の作用によって、おもに岩の石英に多量に含まれていた石英が溶かし出さたことによる。

したがって、この鉱床の上は、周囲よりも地表の重力はわずかに低くなっている。その違いは、場合によって異なるが、大きくても 1 ミリガル程度にしか過ぎない。これは全重力の 100万分の 1 に相当する。

(6) アンドリューレイク鉱床の発見

前述のように、1986年（昭和61）年にヘリポーン電磁探査の現地テスト調査を行い、この手法が対象地域の類似に有効なことを確認し、翌1987年 6 月に、広い範囲を対象にヘリポーン電磁探査を実施した。その測定距離は合計1,007km、測線間隔が250mで、約250kmの範囲をカバーした。

これによって地抵抗の低いところ（低比抵抗異常）を検出し、8 つの有望地区を選定した。直ちに地上探査用の線（グリッド）をそれぞれの有望地区内に設定し、VLF—MT探査によって地抵抗異常を確認した。また、これを追いかけるように、7 ～ 8 月初旬に重力探査を実施し、多数の重力異
6.3 鉱床探査の技術について

鉱床探査の技術とし、特別な探査手法や測定法がクローズアップされることが多いようである。しかし、実際の探査においては、いろいろな既存の手法の中から適切な手法を選択したり、データの解析にかかわるモデルを構築することなどが重要となる。そのような総合的な探査技術について紹介する。

(1) 鉱床モデル

重力探査で問題になるのは、重力の測定結果だけに基づいて隕香の状態を推定する場合に、答が一つに決まらないことである。図20には、重力の分布が隕香に存在する状態として4種類のケースを描いている。それぞれのケースで、隕香の重力の変化は、隕香の高さが示されたものと同じ測定結果が得られる（3と4とは重力の位置が同じで、隕香は4の方が多い）。つまり、図の曲線のようなデータが得られた場合、1から4のどのモデルを選びでもよいことになる。実際、計算で求められた答えが無限に考えられる。しかし、実際の答は一つしかない。このような問題は重力探査に限らず、物理探査一般にお
図21 矿床モデルの例（シナスズ地域）

表7 主な探査法と岩石の性質

<table>
<thead>
<tr>
<th>探査法</th>
<th>研究</th>
<th>岩石の性質</th>
</tr>
</thead>
<tbody>
<tr>
<td>電気</td>
<td>重力</td>
<td>電気性, 電導性</td>
</tr>
<tr>
<td>極性</td>
<td>電子探査</td>
<td></td>
</tr>
<tr>
<td>食ヒート</td>
<td>地下水, 火山ガス</td>
<td></td>
</tr>
<tr>
<td>レーザー</td>
<td>地下水, 火山ガス</td>
<td></td>
</tr>
</tbody>
</table>

表8 様々な探査手法

<table>
<thead>
<tr>
<th>研究</th>
<th>技法</th>
<th>研究手法</th>
</tr>
</thead>
<tbody>
<tr>
<td>地質学</td>
<td>火山ガス</td>
<td>火山ガス探査</td>
</tr>
<tr>
<td>岩石学</td>
<td>火山ガス</td>
<td>火山ガス探査</td>
</tr>
</tbody>
</table>

このように, 地球の内部を推定する基礎を解くためには, 現実の岩石の物理的性質（重量探査の場合は密度）をあらかじめ知っておくことが必要である。このためには, 試料によってサンプルを採取して, 実際の岩石の物理性を測定しておく。実際の探索データにはばらつきがあるが, それを基に便利のように, かつ現実性をなるべく損なわないように単純（モデル化）する。また, その結果の形状がある程度予想されれば, それを実際に近づけることができる。そのためには, 地質の状態をモデル化し（地質モデルを作り, これとの関連で物理的モデル（物理モデル）を作成する。このようなモデルの例を図21に示す。この図で, 数字で与えられているのが物理モデル, 画面で表現されているのが地質モデルとなる。

鉱床近傍の岩石の状態をモデル化したものを鉱床モデルと総称している。鉱床モデルの中に, 地質モデルや物理モデルのほかに, 化物・化学モデルと鉱床の生成モデルがあり, これらは相互に関連している。

見当外れた鉱床モデルは役に立たないばかりか, かえって鉱床の発見を阻害する。なるべく現実に近いモデルを作ること, すなわち鉱床を見やすく理解することが, 探査技術の重要な部分をなすことになる。

(2) 探査技術の高度化

表7は鉱床探査の主要な手法を列記したものである。それぞれの手法は, 岩石が持つ物によって性質のうちの特定のものに関係している。これら手法を, 導く詳しく分類したのが表7であり, これにより多用な探査手法が存在している。これらは, 地質状況の状態によって, 実際はさらに細かく区別される。
多様な手法のなかから、現実の探査プロジェクトに適した方法（または組み合わせ）を選択することが必要となる。そのためにには、前述のような鉱床モデルの構築が必要であり、そのモデルを使ったシミュレーションの技術が必要となる。また、選定した手法を実際にお試しすることも必要となる。その場合、可能な限り、実際の鉱床を試験地として利用する。このようにして、有効性が認められた手法が実際の探査プログラムに組み入れられることになる。

実際に現場で使いにいかない場合、当初予想していなかったような地質や現象に遭遇したり、また、いらない改良点が見つかったりする。特に、データ処理方法を最適化していくことが重要である。このように、探査対象に技術を最適化させていく作業の全体が、探査の技術開発である。物理探査についての以上ののような工事を図22にまとめておく。

7. カナダ・アサバスカ盆地での物理探査技術の高度化

カナダ・サスカチュワン州北部に位置するアサバスカ盆地（図23）は、不整合間欠岩層を挟んだ世界で最も有名な地域で、現在ウランを生産している3鉱山だけで、世界のウラン供給量の3分の1を占める。この地域は、今後も新たな鉱床が発見されかされる可能性が極めて高いと考えられており、カナダのカムコ社、フランスのジェロ社、ドイツのウランフェルツ社が積極的な探査活動を展開しており、鉱業企業団もこれに倣って探査を実施してきた。特に鉱床探査では、鉱床タイプと地域固有の地質環境により、物理探査の役割や探査フロー（探査手法の組み合わせと順序）が異なってくる。また、鉱床成因については、考えが解凍能力の違いなどから、探査各社の探査のスタイルと技術開発の重点の置き方は微妙に異なる。本節では、アサバスカベースの不整合間欠型鉱床に対する、鉱業企業団による最近の物理探査技総合の高度化の試みと探査各社の物理探査手法選択における傾向の一例を紹介する。

7.1 アサバスカ盆地における不整合間浸型鉱床探査史と物理探査

アサバスカ盆地では、始生代（25億年以前の地層）の花崗岩類と前期巌生代（25億年～18億年の間の地層）の変成堆積岩（以下、変成堆積岩類という）を基盤として、これに原生代中期（18
侵年〜10極年の地層）のアサバソカ砂岩層の不整合関係で見られている。一般的に、基盤の変成堆積岩類には三葉虫を多く含む地層が含まれ、これはアサバソカ砂岩層との不整合面付近に鉱床の主な部分が存在し、不整合関連型鉱床と呼ばれている。このタイプの鉱床は、平均品位が皆無に近く、これらのどの高品位を作る。しかし一方、スケルトン全体の容積は比較的少なく、探査の対象となる鉱床の平面的な拡がりは最大でも100m×100m程度と想定される。また、近年では地表下数100mに位置する高品位鉱床の探査は、もしごとで、試掘探査の対象となる範囲を絞り込んでいく段階で、物理探査の役割がさらに大きくなっている。

当地域の鉱床は、広域地層の不整合面が地表に現存していたことから、それを沿っていくことから始まった。それには、物理探査として、まず空中からの放射線探査と、地上での放射線探査が用いられた。1958年（昭和53年）に発見されたラピッドアイク鉱床は、この方法で発見された露頭鉱床の典型である。

ラピッドアイク鉱床の発見によって、地質学的にアサバソカ砂岩層が鉱床形成に重要であることが示され、鉱床取扱の促進が図られた。その結果、アサバソカ盆地のほぼ全域に探査機が設置された。

ラピッドアイク鉱床のような地表付近の露頭鉱床を用いた探査がしばしば用いられたが、1975年（昭和50年）にキーエルク鉱床が発見されると、探査の対象と手法に新たな変化が起こった。すなわち、キーエルク鉱床の詳細な調査によって、ウラク鉱床が、石英質の地層を含む堆積岩層とその上位のアサバソカ砂岩層との不整合面に存在することが判明し、それを基に、電気異常体（コンダクター）である基盤岩中の石英層と、不整合面の交わる部分（これをコンダクター軸と呼ぶ）が、放射能ではあるものの、きわめて明確な探査のターゲットとなりうることが初めて認識されたのである。

それ以来、コンダクター軸の位置を推定する手法として、様々な電気・磁気探査が試みられ、その結果、深度150mまでについては、周波数領域の水平ループ電磁探査、それ以深については、時間領域の電磁波プロファイル（電磁波水平探査）が有力かつ経済的な手法として定着している。ドーンレイク、シーグレイク、マッカーサリバー、ミッドウェスト等のウラク鉱床は、電磁探査で推定されたコンダクター軸をターゲットとした試掘探査で発見された鉱床である。アサバソカ盆地の不整合関連型鉱床の地質・

![図24 アサバソカ盆地での不整合関連型鉱床の地質・物性モデル](image)

物理モデルを図24に示す。

アサバソカ盆地での不整合関連型鉱床の探査を実施する際の鍵となる鉱床の特徴は、現在、以下のように考えられている。

①花崗岩類が堆積をなす地域には存在しない。
②コンダクター軸沿いに存在する。
③アサバソカ砂岩層堆積後の断層帯に見られた鉱床が存在する場合が多い。

アサバソカ盆地でのウラク鉱床探査は、これらのが特徴に注目して、一般的に、以下のように進められている。

(1) 空中磁気探査（地層区分と地質構造調査）

アサバソカ砂岩層は磁気的に透明（磁化率0）である。したがって、磁気探査結果はアサバソカ砂岩層の下位にある基盤岩の磁気的特性を示していると考えてよい。アサバソカ盆地の場合、さらに、その基盤岩の中の変成堆積岩類は花崗岩類に比べて極めて低い磁化率を持つ。そこで、磁気探査により石英層を含む変成堆積岩類の分布範囲を絞り込むことができる。特に、空中磁気探査の場合、他の空中物理探査と同様、広範囲の探査を迅速に行うことができる。なお、変成堆積岩類は花崗岩類より密度であることから、重力探査を補完的に実施して、空中磁気探査による解釈を補強する場合もある。

(2) 空中電磁探査（コンダクターの大きな検出）

頻繁な石英層であれば、時間領域空中電磁探査により深度500m程度まで検出が可能である。不整合面深度が深い地域では、周波数領域空中電磁探査が使用される場合もある。コンダクターの走行（一般に、地層の伸びの方向と一致）および測線（飛行）方向の不整合によるコンダクターの抽出漏れ
がないよう、最近は、2方向の誘導を設定するのが普通である。
(3) 低位電磁探査（コンダクター軸の位置推定）
アサバスカ砂岩層や層石巻層でない変成堆積岩類は、数千万mと比抵抗値が高いので、層石巻層を、真空下におかれた板状のコンダクターとみなしてコンダクター軸の位置推定することができる。
(4) 試錐探査（コンダクター軸周辺の地質の評価）
試錐によって採取された岩芯を観察し、鉱化帯や変質帯の深さを求め直接推定する。また、岩芯の一部は、後期化学分析し、地質準数異常や変質鉱物の組み合わせによる地質・地化評価のデータとする。
(5) 検査（鉱化帯の把握）
放射線検査装置を試験孔中に下ろして測定する（放射線検査）により、鉱化作用の強さとその拡がりを定量的に把握する。
7.2 アサバスカ盆地における物理探査技術高
度化の課題
(1) 課題
上述のように、アサバスカ盆地では、1970年代後半から、鉱床と層石巻層の密接な関係に着目して、電磁探査を核とした一連の物理探査によって効率よく幾つものウラン鉱床が発見されてきた。
この地域は未発見の鉱床がまだ多く存在するとも信じられているが、探査の深度が増していることや、ある程度探査がなされた地域の中央からさらには細かく探査を行う必要性があるなど、探査の難易度は高まっている。これに伴い、探査技術の高度化が求められている。
探査技術の課題として次のようないくつかの項目がある。
1. コンダクター軸の位置・走向推定精度の向上
コンダクター軸の位置推定については幾つかの理由がある。例えば、実際の層石巻層が一斜の板状コンダクターとして表現できない場合がある。また、周辺の岩石の比抵抗値が低くて、コンダクターが真空下にあるとみせない場合もしばしばある。これらは、逆断層や空洞中におかれた板状のコンダクターとみなしてコンダクター軸の位置を推定した場合に、誤差の原因となる。
2. コンダクター軸の走向推定は、測線（数百mおきに等間隔に設置）上で推定されたコンダクター軸の位置を、測線から測線へとつないでいくことで行うが、測線間隔が大きい場合には、本来あるコンダクター軸を誤ってつないでしまう場合がある。
2. オフコンダクター鉱床の探査
1989年（平成元年）にアサバスカ盆地の疑いに近い

図25 時間波の水平電磁探査（2次）概念図
ところでおき発見された、スー鉱床の一部をなすSue-Cと呼ばれる鉱床は、周辺断層帯水平部の電磁探査で推定されたコンダクター軸から100mほど離れて存在し、近くに顕著な変質層帯が認められなかった。このような鉱床は、通常の電磁探査で抽出されるコンダクター軸を試験ターゲットとしていたのでは見落としてしまう。こういった鉱床の探査のためには、オフコンダクター（コンダクター上の位置しない）鉱床の探査手法が新たに必要とされてきている。

3. 变質帯等に着目した探査
不整合関連型鉱床の発見される特徴として、層石巻層の存在以外に、鉱床をとりまとめ変質帯の存在が。
カナダの北西準州の不整合関連型鉱床の発見においては41年に述べたが、そこでアサバスカ盆地の場合には周辺の土地の比抵抗値が全体に高かったこと、地形が平坦だったということに助けられ、ヘリコプター電磁探査を重ねて探査によってこの変質帯を捉えることに成功した。
しかし、アサバスカ盆地でのこの変質帯を捉えることはとくにおかしい場所が存在していて、未だ有効な手法が確立されていない。

(2) 課題の解決への検討
これらの課題の内、コンダクター軸の位置推定と変質帯の抽出について、最近の地質調査やコンピュータシミュレーションによって新たな可能性を見いだしたので、以下に紹介する。
1) 電磁探査3成分測定
アサバスカ盆地における現実の時間波の電磁探査は、図25に示すように、水平、垂直それぞれ1成分からなる2成分水平探査が主流である。電磁事業団では1994年（平成6年）から水平成分を2成分に、合計で3成分測定の水平探査を採用してコンテナ軸の位置・走向推定の精度向上を図っている。時間波の水平電磁探査の測定及びデータ処理は以下のように要約できる。
a）測定仕様
空中磁気探査と空中電磁探査から抽出された有望地域において、なるべくターゲットとするコンダクターに沿うように地上に線路（この測線上で受信を行う）を展開し、地表へと最
大で2kmまでの長方形の送信ループを設定して、
数個軸に相当する保証がある。
送信ループの大きさなど、測定仕様は、探査対
象（不整合面）の深度や波の伝播の考慮を含め
るが、例えば、不整合面の300〜600mの場合には
次のような仕様が一般的である。
・ループサイズ：400m×800m〜800m×800m
・送信電流：10A
・測線間隔：200〜800m
・測線上での間点間隔：50m
b）测定
送信ループに流した電流通の断続することによっ
て、一次亜心が変化し、電場が発生する。この際、
地下にコンダクターがあればその中に交流電流が
流れる。一次亜心を減衰させ、コンダクターの中の通電流
とそれに伴う二次亜心を測定し、分析していく。この
二次亜心の深度成分（X）及び背下成分（Z）
の変化を線路上の各点で観測する。実際の測定
では中央数値を用いて、各受信点から遠くの通電
電流の時間変化（dB/dt）を、電流通断から約10
msecまでの間、10ないし20の対数等間隔に分割
したチャンネル（フィルタ）で観測する。ここ
に、電流通断後の発電の時間のチャンネルをアーリ
ーチャネル、遅い時間のチャンネルをレイトチ
ャネルと呼ぶ。

図26 時間領域電磁探査のプロファイル（2成分）

以上のデータ処理・解析の結果、次の2成分測定で
も、これらを指摘する3成分測定でも共通である。
コンダクターの方向推定は、2成分測定の場合、
複数の測線でのコンダクター位置推定の結果とし
てしか求められないが、3成分測定では各測線每
に推定が可能である。この例を図27と図28で示す。
図28は時間領域電磁探査の結果の一部で、図27に
示した送信ループ、各線側に通過する伝導帯、電流の
プロファイルである。測線方向の水平（X）成分と
これに直交する水平（Y）成分の検査の関係は図
27の直線の通り定義している。図28でX成分とY
成分のアノマリーはともに正であるからその合成
図27 時間領域電磁探査の3成分測定例

マルは各測線上のプロファイルから推定されたコンダクター軸の位置を示す。
図の右下の矢印の向きをX成分、Y成分の正の向きと定義している。

図28 時間領域電磁探査の水平2成分プロファイル

LoopのN中心を通る測線（400E）の水平2成分のもの化プロファイルを示した。
X成分、Y成分のアンペリの向きからコンダクター軸は測線に垂直する方向から図のようにに進んでいる事が分かる。

成分は図27で右下向きとなり、これから推定されるコンダクター軸の方向は右上-左下となる。X成分とY成分の信号の大きさの比から、測線に対するコンダクター軸の角度を計算すると、その結果は、各測線上のコンダクター軸の推定位置（図27に丸で示した位置）が固定した方向と線がなす角度と一致する。また、Y成分には、コンダクター軸の位置を正確に推定する上で極めて優れた性質があるので、それより迅速的に利用することを目指している。すなわち、ブロック盤谷の構造物のように、バックグラウンドが水平多層構造と近い場合には、そこに流れる電流が無視できないような場合であっても、それによって発生される電場のY成分は極めて小さいと考えてよいので、そこで、これまでの測線設計の基準を踏まえて、予想されるコンダクター（石破層貫通）の方向に測定するように測線を設定すれば、Y成分にはコンダクターによる電場の影響のみが現れるはずである。図29にコンダクターが線と45°で交差する場合のX成分とY成分のプロファイルの違いを示す。真空中ではどちらのプロファイルも左右対称となっているが、水平2層構造中ではY成分は左右非対称となり、アンペリの位置も、特にアレイチャネルでコンダクター軸からずれる。一方X成分については、水平2層構造中でも真空中と同じ結果となる。このY成分の特性により以下の効果が期待できる。

バックグラウンドを流れる電流が原因で起きるアノマリーやコンダクター軸の流れを避けることができる。したがって、バックグラウンドの影響を強く受けないアレイチャネルの応答をターゲットのコンダクター軸の位置推定に利用できる。

図29 時間領域電磁探査プロファイルのX成分とY成分の比較

計測した図示中に、測線形状のコンダクター（3m×3m×3m）を、深さ-100מの周辺の測定点（基盤）海面に対して120°の交差位置を示しており、測線に対するコンダクター軸の推定位置（図27に丸で示した位置）を固定した方向と測線がなす角度と一致する。また、Y成分には、コンダクター軸の位置を正確に推定する上で極めて優れた性質があるので、それより迅速的に利用することを目指している。すなわち、ブロック盤谷の基盤物のように、バックグラウンドが水平多層構造と近い場合には、そこに流れる電流が無視できないような場合であっても、それによって発生される電場のY成分は極めて小さいと考えてよいので、そこで、これまでの測線設計の基準を踏まえて、予想されるコンダクター（石破層貫通）の方向に測定するように測線を設定すれば、Y成分にはコンダクターによる電場の影響のみが現れるはずである。図29にコンダクターが線と45°で交差する場合のX成分とY成分のプロファイルの違いを示す。真空中ではどちらのプロファイルも左右対称となっているが、水平2層構造中ではY成分は左右非対称となり、アンペリの位置も、特にアレイチャネルでコンダクター軸からずれる。一方X成分については、水平2層構造中でも真空中と同じ結果となる。
アーリーチャンネルの応答は信号対雑音比の点でレイティングチャネルに比べて優れている。そこで、
充分な信号対雑音比（S/N比）を確保したまま送
信ループサイズを小さくすることが可能となり、
作業速度を高めることができる。また、アーリーチャンネルは、ターゲットとするコンダクター中で、
コンダクター軸に近い部分（すなわち、板状
コンダクターの上端部で、それが不整合面と接す
る浅部）に集中する電流の応答となるため、コン
ダクターの傾斜に起因する、アノマリーリーの位置とコンダクター軸のずれが少ない。さらに、プロフ
ァイルの非対称性からコンダクターの傾斜を推定
することが容易になる。
一方、誤差点として、以下が考えられる。
①測線をコンダクター軸に直交させた場合のX成
分に対して、プロファイリング上の応答は長
くなり分解能が低下する場合がある。
②送信ループの中心を通る測線以外ではY成分に
もバックグラウンドを流れる誘電流による影響
が出るので、一つの送信ループを使って複数の
測線をカバーする手法が使えない。
2）直線比抵抗マッピング
先述したように、コンダクター軸近傍の不整
合面付近を試験で評価するのアサパクサ地点で
の不整合関連型探査の基本である。ところが、
アサパクサ地点の東緯度に位置するスー鉱床の
スー-Cと呼ばれられる鉱床は、コンダクター軸から
100m程度離れた位置（オフコンダクター）に発見
された[3]。この事実は、経済性のある鉱床が、こ
れまでの探査手法で収め込まれる範囲の外に存在
する可能性を示唆している。このような鉱床をオ
フコンダクター鉱床と呼ぶ。
スー-C鉱床では激波数領域水平ループ電磁探
査、VLF-E.M、周期数領域空中電磁探査、CSAMT
などが試験されたが、これまでのところ、鉱床上
に異常を示すのは矩形電極配置（図30）を用い
た直線比抵抗マッピング（DC Resistivity
Mapping）で、以下のDC-R）だけである。DC-Rの特
性を把握するために、動態業団ではコンピュタ
シミュレーションと現地試験探査を実施した。
①シミュレーションモデル
図31に示す2種類のモデルについて、2次元有限
要素法モデリングプログラムを用いて検討した。
電極配置は、全モデルについてスー-C地区で実
際に行った探査仕様に従い、電極電極間隔1,000m、電極電極間隔12.5mの傾度法配置とした。
ちなみに、矩形電極配置は2次元シミュレーションにおいては傾度法電極配置となる。
に存在する。1 層目の層厚は 30 m、比抵抗は 500 ohm-m とし、2 層目の比抵抗を 200、500、1,000 ohm-m で変化させる。

b）シミュレーション結果
モデル 1 のシミュレーション結果を図32に示す。ここでは、横軸は異常体の上部深さ、縦軸は観測される比抵抗異常ピーク（トラフ）の平価値である。分解能は当然深部に向かって低下し、その関係は今回のシミュレーションの深度範囲では、2次曲線（実線）で近似できる。これで重要なことは、1,200 m と大きな電流電極間隔を採用しているにもかかわらず、浅部の 2 次元的異常体は強くシャープな異常として捉えられ、深部に向かって急激に分解能が低下するという点である。

なお、周波数領域水平ループ電極探査はこれと対照的で、深部探査のために周波数を下げるとともに送受信電極間隔を広げた場合、分解能は送電極間隔に比例して低下し、送電極間隔を一定とした場合、異常体の深度を変えて異常ピーク（トラフ）の幅を変化させる。

モデル 1 のシミュレーション結果からもわかるように、D-C-R では、短波長の異常は浅部の異常体に起因するのに対し、長波長法と同じように、長波長除去フィルターにより広域的な変化を除去した。また、短波長除去フィルターにより地表付近のノイズを低減することができると考えられる。

しかし、長波長法が地表の密度構造（分布）について線形であるのに対して、生の観測比抵抗異常は線形構造（分布）について非線形である。この問題についてモデル 2 で検討した。

モデル 2 では同じ浅部比抵抗構造（分布）について、深部の比抵抗を 3 通りに変化させて、このシミュレーション結果を図33に示す。また、得られた観測比抵抗に長波長除去フィルターを作用させた場合に抽出される異常を図34 a）に示す。この場合、深部の比抵抗が大きい場合ほど異常は大きく現れる。すなわち、生の観測比抵抗値に対するフィルター処理では、バックグラウンドの比抵抗値が高くなるほど浅部の異常は強調されてしまうことになる。

一方、図34 b）は同じモデルのシミュレーション結果を示す。
7.3 探査各社の物理探査手法選択の傾向

アサバカス地域では現在主に、カモ、コジェマ、ウランエルツの3社と、地質測地団がウラン探査を実施している。これら各社は鉱床形成についての考え方や解析能力の違いから、探査手法の選択に違いがある。ここでは特に地域鉱床探査を例として各社の手法選択の違いを紹介する。

アサバカス地域の時間領域電磁探査では、1.1 km程度の固定大送信ループを使った水平探査（固定ループ法）が主流であるが、バックグラウンドの比較的低いと予想される場合等には、移動ループ法と呼ばれる手法が使われることもある。また最近になって、ステップワイズ移動ループ法と呼ばれる、固定ループ法と移動ループ法の中間的な手法も使われるようになった。これらの手法の特徴と手法選択における各社の傾向を以下に示す。

(1) 固定ループ法

この手法は送信ループを固定しておき、受信ループのみを移動させる測定手法である（図36 a）。深部探査に有利な大きな送信ループを使用した場合でも作業能率を落とすことがなく、逆に、数測線を1つの送信ループでカバーできるため、受信作業をきわめて容易になる。その結果、作業単価が安くなり、長さが1 kmにわたる測線の採用（受信を容易にするため、測線上の位置を事前に切り出しておくこと）と測定にかかる費用が1,500 ナダル程度（測定範囲をその周辺にいたループで2重にカバーする場合）で済む。したがって、対象範囲を比較的密な測線間隔でカバーし、コンタクターの連続性を調査するのに適している。

しかし、コンタクターの存在位置についての事前情報が少ない場合、送信ループの位置が不適切となる可能性があり、結果としてコンタクターを見落とす危険性がある。また、各受信点と送信ループの対数をとり、そのうえで、浅部異常を抽出するためのフィルター処理を施すと、図35 b) に示すように、電流電極間隔に依存しない結果が得られる。ここでは使用したフィルターは、1,600 m以上と50 m以下の波長を通過するバンドパスフィルターである。なお、処理結果の若干の差異は、電流電極間隔4,940 m以下の低比抵抗部分で測定電圧が小さく、S/N比が十分でなかったことがあるための一因であると考えられる。

この手法について、さらに現場での試験を重ねて、その有効性を確認していく必要があると考えている。

図35 深部電極配置直流抵抗マッピング試験探査結果
a) 測定された電流電極配置, 電流電極間隔によりその値は異なる。
b) 測定された比抵抗を対数変換した結果。フィルターを適用したもの。電流電極間隔に依存しない結果が得られる。なお、ここでは使用したフィルターは、1,600 m以上と50 m以下の波長を通過するバンドパスフィルターである。
図36 時間領域電磁波探査における3種類の測定手法（平面図）

ーブとの位置関係が一定でないため、バックグラウンドの比較検査が無視できるほど高くない場合、その比較検査が均質であっても受信点毎にその影響が異なり、解析が難しくなる。

発電事業団は、この解析の難しさをコンピュータシュミュレーションによって克服しながら、ことにこの手法を使用してきた。しかし、地質構造上の角度部等は現在のシステムのシュミュレーションプログラムでは正確な応答を計算できない。そのため、より完璧な3次元シュミュレーションプログラムの開発を目指す複数のコンソーシアムに参加するなどして、解析の高度化を図っている。

（2）移動ループ法

この手法は、受信ループと送信ループの間隔を一定に保つようにして、送信ループを受信ループと同時に移動させる（図36b）。

バックグラウンドの比較検査が均質なら、各受信点に対するその影響が等しいため、ノイズの抽出が容易である。また、コンダクターを見落とす危険性は少ない。さらに、環境ノイズの少ない場所（時間帯の）直前成分測定値をそのままで解析に使えるため、深部を対象とした探査でも比較的小さな送信ループで対応できる。

それでも、数百mの送信ループを各受信点毎（100m間隔とすることが多い）に移動させるため、作業スケジュールの変化が生じ、さらに送信点間の測定とは別に送信ループ予備用の測定を仮断する必要も生じて、作業単価は1km当たり2,500円/ダム程度で高い。

その他の問題点として、送信ループの大きさを常に一定で取得することは限らないため、測定点毎の1次磁場のばらつきに注意を欠き補正を要することもあらわれる。また、コンダクターの深さによっては最適な送・受信点間隔が異なるので、コンダクターの深度についての事前情報が必要である。

同様に、バックグラウンドの性質を無視できることができると考えられる場合の他は、基本的に移動ループ法を選択している。

発電事業団とバンエルフ社はこの手法の使用に慎重である。移動ループ法は、多くの場合単純な結果を導き出すが、地質構造の複雑さの見落としてしまう危険性を有しており、慎重な解析が固定ループ法の結果を超えるほどのものである、と考えているためである。カイコ株式会社は、主に費用の観点からこの手法を好まない。

（3）ステップワイズ移動ループ法

この手法は、送信ループの移動距離をループの大きさとし、各送信ループについて、固定ループ法と同様に、送・受信点間隔が異なる複数の受信点で測定を行う（図36c）。

移動に時間のかかる送信ループの移動回数を減らし、送信ループの一部を移動前と移動後で共有にすることで作業性の向上を目指す。各ループあたりの測定点数を増やして情報の増大を狙う手法である。作業単価は移動ループ法と同程度である。

ステップワイズ移動ループ法は、固定ループ法と移動ループの双方の性格を合わせ持つことから、潜在的な探査能力が高いが、動物性を有する固定ループ法の数値の数のループを使って探査する多重固定ループ法となり、情報量も多くなるが、それぞれの作業単価も高くなる。一方、移動ループ法としてみれば、各送・受信点間における水平方向の測定間隔は短いか、複数の送・受信点間隔を持つことから、より幅の広い探査検出深さを持つ。マルチ間隔送・受信／広範間隔移動ループ法といえる。

したがって、基盤岩の深さが確認され、新しい変質帯の存在や地質構造推定に利用できる潜在能力を持つ。ただ、必要な情報は引き出すには高度なデータ処理・解析が必要とする。また、探査の重点を何に置くかを明確にして送信ループのサイズや最長送・受信点間隔等の決定をしない。