「もじんにゅ」の安全性、信頼性の向上
にむけて

伊藤　和元　森山　正敏*　前田　太志

教員本部　電力増強炉もじんにゅ建設所
*　電力発電本部

Improve the Safety and Reliability of Monju

改善の安全性、信頼性の向上に関する研究

「もじんにゅ」では、2次主冷却系ナトリウム漏洩事故の教訓と反省を踏まえて安全検査を行い、
改善後の検査に対する具体的な改善策を検討した。この安全検査は、設計の基本的な考え方、安全
設備の機能性、各種検査の精度、安全対策等の妥当性についての点検のほか、運転手順書や品質保
証体系、活動の安全性に関する点検等5分野について実施したものである。この結果、ナトリウム漏洩
の早期検出、事故防止及び影響部位に関する各種の改善方策をもじんにゅの安全、信頼性の向上につ
なげるための検討。運転手順書等の改善、品質確保等の改善を次期の改革方針としてまとめた。

キーワード

高速増殖炉、もじんにゅ、ナトリウム漏洩、安全検査、安全性、信頼性、運転手順書、品質保証

FBR, Monju, Sodium Leaks, Comprehensive Safety Review, Safety, Reliability, Operation Manual, Quality Assurance

1. はじめに

高速増殖炉もじんにゅ（以下「もじんにゅ」と
いう）においては、1995年（平成7）12月8日に
発生した2次主冷却系ナトリウム漏洩事故の状況
調査、原因究明等から明かとなった教訓を踏まえ

① ナトリウム漏洩問題を中心とした点検
② 「もじんにゅ」設備の設計から運用に至るまで
の点検
③ 運転手順書等の点検
④ 研究開発成果、技術情報の反映の点検
⑤ 品質保証体系、活動の点検

柱とする「もじんにゅの安全検査」に関する実
施計画にそって、設備・システム全体、運転手順
や品質保証の仕組みや活動等について点検を実施
し、安全性、信頼性向上の観点から改善すべき課
題、今後確認あるいは研究開発を進めるべき事項
等を検討した。特に、ナトリウム漏洩に対する安
全性の向上につなげるための設備改善に係る課題
については、具体的な改善方策を検討し、その効
果を定量的に明らかにした。

また、2次主冷却系ナトリウム漏洩事故以降に

サイクル機構技術 No.1 1998. 12
本点検のフロー及び結果を図1に示す。水、蒸気系温度計計のうち4本が過共振箇所条件を満足しなかったが、このうち1本は設計時に選んだ流速を使用したためであり、他は管路部の剛性等を考慮していないことが原因である。上記の温度計及び設計強度信を満足しなかった温度計（18本）の計22本は、交換するか撤去することとした。また、これらの温度計はすべて同一形態であり、他に15本の同一形態の温度計及びサンプリングノズルが同様な使用条件（主蒸気系）のもとで設置されていることから、予防保全の観点からあわせて撤去あるいは交換することとした。

なお、一次冷却系温度計及び炉外燃料貯蔵設備温度計については、液のため、内面目視点検、超音波探傷検査等により現状における健全性点検を実施し、欠陥が発生していないことを確認した。

(2) ナトリウム内包壁の健全性点検

冷却系内でのナトリウムを内包している管類、配管類及び事故時ののみナトリウムに接触する管類（ガードベッセル、ナトリウム、水反応生成物吸収設備吸収容器等）について、設計の基本的な考え方に遅れ、内壁としての構造健全性に対する設計要項事項の妥当性、実機が設備設計条件を満足したものとなっているか等について点検した。本点検では、図2に示すフローを従い各箇所で関連する設計図面等を照合することによ
り、次の事項を確認した。

① 設計の基本の考え方から展開された設計要求事項が既設許可申請書に反映されていること。
② 設計要求事項が今回の事故、先在に対する事故・故障等の見解に照らし、内包型の健全性、構造の基本の事項を考慮した結果、一部の事項が含まれるものとなっていること。また、設計要求事項が既設許可申請書に設計条件として適切に反映されていること。
③ 上記の設備設計条件が既設許可申請書、既設許可申請書、又は既設許可申請書に適応して適用され、製作設計、製作・製作、製作・製作及び製作・製作の段階へと継続・具体化されていること。

特に、想定すべき荷重の安定性、構造不連続等の設計が求められる適切な基準（構造等の技術基準、高温構造設計指針及び耐熱設計基準）に従ってなされているかということに注意を払って点検した。

点検対象とした設備の機器を含めた、このことを確認した。
① 何れの設備の安全性の確認を適切に考慮した機器種別、形状等の設計を考慮した事項が定められ、それらが設備設計条件に定められている。
② 材料、構造、強度等の設計条件が詳細設計、製作・製作、製作・製作及び製作・製作の各段階で継続に継承されており、各機器の強度評価が適切な基準によりなされている。

また、ナトリウム冷却水準流部での温度差が約70℃で下流側流体部と破損を生じた海外における事故例があることから、ナトリウム冷却水準流部内での冷却水準流部と規定された各温度を含む設計値に基づき温度ゆらぎに対する配管の健全性を評価した。この結果は図3に示す通りである。冷却するナトリウム温度差を温度変動とした保守的な簡易評価の結果から、材料の強度試験に相当する限界温度変動幅を上回る温度差が該当箇所で現れている。4箇所における試験結果を適用した。

図3 配管冷却水準流部の温度変動を考慮した健全性評価

資料に使用した文献
サイクル機械技術 No.1 1998.12
図4 漏洩的早期検出、拡大防止等の点検

ウーム漏洩に対しては漏洩発生の早期検出、換気系の早期停止、ナトリウム溶液の抑制、漏洩ナトリウムの燃焼抑制等の設備改善やそれらの適切な運用手順書への反映が必要となった。設計改善に係る課題に対する検討結果を各設備ごとにまとめて表1に、二次主冷却系ナトリウム漏

<table>
<thead>
<tr>
<th>表1 漏洩防止改修に関する改善点のまとめ</th>
</tr>
</thead>
<tbody>
<tr>
<td>改善対象</td>
</tr>
<tr>
<td>ナトリウム漏洩の早期検出</td>
</tr>
<tr>
<td>ナトリウム漏洩の早期検出</td>
</tr>
<tr>
<td>ナトリウム漏洩の早期検出</td>
</tr>
<tr>
<td>漏洩の早期検出、拡大防止</td>
</tr>
</tbody>
</table>
2.2 「もじゅ」設備の設計から運用に至るまで

「もじゅ」の原子炉施設を対象に、再発性を確認することを目的として異常事象の発生防止、早期検出、拡大防止等の観点から設計の基本的な考え方と順に整理し、それらが明確に継承・具体化され設計・製作、試験・検査がなされているかを点検した。本点検は、異常発生時や通常運転時のシステム間相互の動作に着目したシステムの点検とシステムを構成する個々の設備機器の機能に着目した設備機器の点検とで構成されるものである。

(1) システムの点検

通常運転時のシステム動作については、これまで実プラントでの試運転で経験していない40%から100%出力範囲での自動化運転を対象として動作ロジックを点検した。異常時のシステム動作については、設置許可申請書添付書類A及びBに記載の事故事象のうち下記の9事故について、実プラントが設置許可申請書に記載されている基本的な経験事項を満たしていること、基本的な設計要件事項ではないが実プラントが有している機能がより確実な異常の検知、拡大防止等に有効であることが点検した。

① 煤気発生器伝管破断小漏洩
② 煤気発生器伝管破断事故
③ 冷却材流路閉塞事故
④ 1次アルゴンガス漏洩事故
⑤ 主蒸気管破断事故／主給水管破断事故
⑥ 燃料取扱取扱事故
⑦ 中間熱交換器伝熱管破損
⑧ 外部電源故障
気体廃棄物処理設備破損事故
点検の結果、実プラントが基本的な設計要求事項を満足していることより、主浜保安の観点から実プラントに付加された機能が安全性、信頼性の向上に有効であると確認した。また、さらに一層の安全確保を目的として、以下のように改善事項を挙げた。

1. 燃料取扱及び事故時の火災警報信号
2. 警報処置手順書に規定されている伝熱管破損事故時の対応操作の異常時運転手順書への整備

気体廃棄物処理設備破損事故時の手順による廃ガス吸入対策操作の異常時運転手順書への明記

設備機器の点検

点検の結果、各系統の設備機器の基本的な設計要求事項の反映状況を検証する観点から、下記の事項を尽くして問題点がないことを確認した。

1. 一次冷凝器、ナトリウム中酸素濃度管理

燃料蒸発管組合体の設計標準では、燃料被覆管強度評価におけるナトリウム中酸素濃度を低減したとしても、外箱壁を考慮している。実際の管理では一次冷却管の設計条件である10ppmを管理目標値としており、不整合となっていない。このことについては、現在までの運転状況で使用された燃料蒸発管組合体の被覆管腐食を計測して問題のないことを確認している。しかし、燃料蒸発管組合体の設計標準が燃料設計の条件に合っているよう改訂することとした。

2. 運転手順書の編集

運転手順書の編集において、ナトリウム濃度が目的とした規律に合っている。また、運転手順書の編集において、ナトリウム濃度が目的とした規律に合いている。また、運転手順書の編集において、ナトリウム濃度が目的とした規律に合っている。また、運転手順書の編集において、ナトリウム濃度が目的とした規律に合っている。また、運転手順書の編集において、ナトリウム濃度が目的とした規律に合っている。また、運転手順書の編集において、ナトリウム濃度が目的とした規律に合っている。また、運転手順書の編集において、ナトリウム濃度が目的とした規律に合っている。また、運転手順書の編集において、ナトリウム濃度が目的とした規律に合っている。また、運転手順書の編集において、ナトリウム濃度が目的とした規律に合っている。また、運転手順書の編集において、ナトリウム濃度が目的とした規律に合っている。また、運転手順書の編集において、ナトリウム濃度が目的とした規律に合っている。また、運転手順書の編集において、ナトリウム濃度が目的とした規律に合っている。また、運転手順書の編集において、ナトリウム濃度が目的とした規律に合っている。また、運転手順書の編集において、ナトリウム濃度が目的とした規律に合っている。また、運転手順書の編集において、ナトリウム濃度が目的とした規律に合っている。また、運転手順書の編集において、ナトリウム濃度が目的とした規律に合っている。また、運転手順書の編集において、ナトリウム濃度が目的とした規律に合っている。また、運転手順書の編集において、ナトリウム濃度が目的とした規律に合っている。また、運転手順書の編集において、ナトリウム濃度が目的とした規律に合っている。また、運転手順書の編集において、ナトリウム濃度が目的とした規律に合っている。また、運転手順書の編集において、ナトリウム濃度が目的とした規律に合っている。また、運転手順書の編集において、ナトリウム濃度が目的とした規律に合している。
2.4 研究開発成果、技術情報の反映の点検

「もんじゅ」は研究開発段階の原子炉であり、設計製作にあたっては数多くの研究開発を実施し、それらを反映するとして、「常陽」の運転経験、海外FBRのトラブル事例等を反映してきた。

表2 実証採用設計評価手法の「もんじゅ」への適用評価結果

<table>
<thead>
<tr>
<th>表示項目</th>
<th>評価項目</th>
<th>評価基準</th>
</tr>
</thead>
<tbody>
<tr>
<td>設計検討方針推奨</td>
<td>1</td>
<td>設計検討方針推奨</td>
</tr>
<tr>
<td>構造策定方法</td>
<td>2</td>
<td>構造策定方法</td>
</tr>
<tr>
<td>評価対象の原子炉</td>
<td>3</td>
<td>評価対象の原子炉</td>
</tr>
<tr>
<td>評価基準</td>
<td>4</td>
<td>評価基準</td>
</tr>
</tbody>
</table>

【図】

溶接検査手順法により、実施検査結果とニトウ・ヘアフィアースの溶接検査結果。溶接検査結果を示す。

（1）高負荷試験における研究開発成果の反映

動態回路図（現：サイクル構造）及び試験機で実施した高負荷運行に係る研究開発の成果報告書約16,000件を対象に点検した。このうち物理・核計装・機器・構造・計測・制御、耐圧力、耐熱性等の「もんじゅ」に関連する技術分野のものの約15,000件であって、さらに、「もんじゅ」に反映すべき事項を含むものとして約3,000件に到り、反映状況を点検した結果、約150件を反映状況の確認ができないものとして除外した。これらの技術内容は他の4項目に集約されるものである。

① 容器部近傍部ラチット評価法による原子炉容器圧力部の強度評価
② 溶接検査手順法による一次主冷却系HIX上部管取付部溶接部の強度評価
③ ベローズ銀手評価法による一次主冷却系HIXベローズの強度評価
④ 燃料物性の変化を考慮した燃料温度変化

これらのうち①〜④は実証採用として詳細な設計評価手法が提案されたことを受けてのものであり、今後のこれらの手法を「もんじゅ」に適用して評価した結果、これらの手法を受ければならないと考えられるものであるが、今後も展開によりデータの拡張、評価手法の改良を進めながら評価を実施していく。

（2）燃料再燃性

「常陽」の運転経験については、1979年（昭和54）から大規模電力の核発電所の新設や本社の高負荷運行開発本部との間で、また、1989年（平成元）から高負荷運行が「もんじゅ」建設中ユーザーが加わり、「もんじゅ」技術開発検討会、燃料材択技術情報交流協定会を通じて技術情報の継続がなされている。本研究では、1996年（平成8）までにまとめられた「常陽」の運転経験に関する技術情報の「もんじゅ」への反映状況を点検した。

約650件の技術情報の中から内容の類似するものを集約したうえで23件の詳細点検事項を抽出し、点検した結果、いずれも適切に反映されていることを確認した。制御棒のスプリング及び吸収体ベレットのリロケーション対策については、現状の「もんじゅ」での制御棒の使用計画から「常陽」と同様の事象が生じることがないと確認している。「常陽」での研究開発状況を踏まえて、製造業の長寿命化の検討に取り組んでいる。

（3）国内外プラントの運転経験

海外FBR、「常陽」、「ふげん」及び国内軽水炉の主要な事故・障害事例や海外軽水炉の火災事故事例に関する約950件の技術情報を調査、分析し、同様な事象の発生防止対策について「もんじゅ」での対応状況を点検した。インターリウム、燃料材択技術情報交流協定会においても対策がとられているもの等、国内外の事例（86件）については、特に詳細な点検を行った。
この結果、他の点検からの問題調査に重複するが、設備改善課題として次の3件を挙げた。
① 温度計状況改善対策
② 予測解析機能の強化
③ 配管状態の改善
なお、配管熱損失に対する性能及び配管温度に対する性能については、それぞれの試運転段階で問題のないことを確認しているが、試運転段階でも確認している事項とした。
また、事故・事象等の事故時の直接的反映とされるが、事故等の経験を通じての改善を図ったものである。
① 新規ラインの配管
② 水蒸気の再吸収
③ モニタリングゲート及びモニタリングデータの使用
④ ディーゼル発電機冷却水及び蒸留水冷却装置の性能向上
⑤ 食品の衛生管理
⑥ 衛生管理
⑦ 環境影響
⑧ のみ「もんじゅ」におけるこれまでの試運転経験の活用
総合調査試験開始以降は「もんじゅ」で経験し、法令・適適にに基づき実施した事故・事象について、発生時及び対策、対策内容の妥当性をその他の運転経験を通じて再評価するとともに1995年（平成7）5月に発行された保証書等の解説、対策、対策を実施した担当者の個別の調査等により抽出された改善を図る要因等の分析、整理を行った。
事故・事象の対策内容、水平段階については、以下の15の事象を対象に再評価を行い、それぞれの妥当性を確認した。
① 二次冷却系配管管部状況
② 水蒸気のフローシャフト圧力低下
③ 性能試験における原子炉冷却水停止
④ 二次冷却系循環ポンプポローマ温度上昇
⑤ 制御用空気設備圧縮機自動停止
約1,000件の保証書の経験を「もんじゅ」機器の保証書の内容として、安全上での問題点として検討するためであるが、共通的な方法は真空ポンプのフレーズの劣化、排気処理装置の変更と同様、ポリューム計の劣化を除くもので、後の観点調査、部品交換時期の適正化を反映していくこととした。
試運転段階での運転、試験・保存の経験から提案された改善にかかる提案（設備改善シート）については、平成8年3月までの間に約270件が提出されており、77件が未実施のまま残されていった。ここでは、計画外のプランの停止の防止、プラント信頼性の向上、作業安全性の向上等の観点から検討を加え、未実施の件数に対して以下の対策方針を整理した。
① 計画的に改善することが望ましい案件
23件
② 今後の運転実績を踏まえて要否を判断する提案
22件
③ 現時点では実施不要とする案件
32件
これらの中③については表3に示すとおりである。

<table>
<thead>
<tr>
<th>計画的に改善することが望ましい案件</th>
<th>改善内容（例）</th>
<th>改善効果</th>
</tr>
</thead>
<tbody>
<tr>
<td>バックアップ機能を有する仕様のCV検査機のCV検査機システムにについて</td>
<td>CV検査機のCV検査機システムに</td>
<td></td>
</tr>
<tr>
<td>2.0 法令及び施設基準の対策</td>
<td>2.0 法令及び施設基準の対策</td>
<td></td>
</tr>
<tr>
<td>3.0 原子炉冷却水施設の対策</td>
<td>3.0 原子炉冷却水施設の対策</td>
<td></td>
</tr>
<tr>
<td>設備の耐震補強及び耐震性</td>
<td>設備の耐震補強及び耐震性</td>
<td></td>
</tr>
<tr>
<td>プラント</td>
<td>プラント</td>
<td></td>
</tr>
<tr>
<td>1.0 水冷冷却塔の冷却水施設</td>
<td>1.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
<tr>
<td>2.0 水冷冷却塔の冷却水施設</td>
<td>2.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
<tr>
<td>3.0 水冷冷却塔の冷却水施設</td>
<td>3.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
<tr>
<td>4.0 水冷冷却塔の冷却水施設</td>
<td>4.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
<tr>
<td>5.0 水冷冷却塔の冷却水施設</td>
<td>5.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
<tr>
<td>6.0 水冷冷却塔の冷却水施設</td>
<td>6.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
<tr>
<td>7.0 水冷冷却塔の冷却水施設</td>
<td>7.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
<tr>
<td>8.0 水冷冷却塔の冷却水施設</td>
<td>8.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
<tr>
<td>9.0 水冷冷却塔の冷却水施設</td>
<td>9.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
<tr>
<td>10.0 水冷冷却塔の冷却水施設</td>
<td>10.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
<tr>
<td>11.0 水冷冷却塔の冷却水施設</td>
<td>11.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
<tr>
<td>12.0 水冷冷却塔の冷却水施設</td>
<td>12.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
<tr>
<td>13.0 水冷冷却塔の冷却水施設</td>
<td>13.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
<tr>
<td>14.0 水冷冷却塔の冷却水施設</td>
<td>14.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
<tr>
<td>15.0 水冷冷却塔の冷却水施設</td>
<td>15.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
<tr>
<td>16.0 水冷冷却塔の冷却水施設</td>
<td>16.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
<tr>
<td>17.0 水冷冷却塔の冷却水施設</td>
<td>17.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
<tr>
<td>18.0 水冷冷却塔の冷却水施設</td>
<td>18.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
<tr>
<td>19.0 水冷冷却塔の冷却水施設</td>
<td>19.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
<tr>
<td>20.0 水冷冷却塔の冷却水施設</td>
<td>20.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
<tr>
<td>21.0 水冷冷却塔の冷却水施設</td>
<td>21.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
<tr>
<td>22.0 水冷冷却塔の冷却水施設</td>
<td>22.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
<tr>
<td>23.0 水冷冷却塔の冷却水施設</td>
<td>23.0 水冷冷却塔の冷却水施設</td>
<td></td>
</tr>
</tbody>
</table>

サイクル機能朱報 No.1 1998 12
「もんじゅ」の安全評価データ

設置許可申請書添付書類には、当時の基本設計をもとに実施した安全解析結果が記載されている。本検査では、最近においては設計・製作が完了するときに試運転データが蓄積されていること、解析評価モデルについての研究開発が進展し新たな知見が得られていること等からみて、設置許可申請書に記載の以下の全事象（33事象）を対象に当時の安全評価データの妥当性（保守性）を点検した。

① 運転時の異常な過渡変化事象（12事象）
② 事故（16事象）
③ 技術的には起こることは考えられない事象（3事象）

④ 重大事故及び既往事故（3事象）

点検の結果、「蒸気発生器伝熱管破損事故」を除く33事象については、当時の安全評価データは最新データと有為な差がないこと、有為な差があるものでも当時のデータは保守側に設定されていなかったことを確認した。

「蒸気発生器伝熱管破損事故」については、高圧ラプチャー模擬評価モデル等の数値計算に基づき、特に水・蒸気系のプロダクト穿通時間の高圧ラプチャー現象を詳しく検討する必要があることが判明した。なお、安全観点検査と、「もんじゅ」用伝熱管耐圧試験等を実施し、これらのデータを基に最新の解析手法を用いて詳細解析が行われ、高圧ラプチャーによる伝熱管の破損伝播は生じないことが再確認された。想定条件によっては安全裕度が小さくなる場合もあることから、今後は適切な安全管理の基盤を確保することも検討する。

（6）「もんじゅ」に適用された規格、基準等の改訂等に係る技術情報の反映の点検

安全上重要である構造物、システム及び機器の設計や検査等に用いた規格・基準類から、「もんじゅ」の詳細設計以降の改訂内容を調査し、それらの「もんじゅ」への反映の要否について点検した。

約2,000の法令等の事項、約10,000の国内外規格等から「もんじゅ」設備の設計・製作に考慮、反映すべき改訂情報として約100件の技術情報を抽出して点検した。その結果、一部の技術規格や設計等に対するASME規格の改訂情報が一部変更されていることと確認した。

2.5 品質保証体系・活動の点検

温度計取やの折損を防止できなかったのは設計・製作管理が不十分であったこと等がナトリウム漏洩事故の反省点として、指摘されている。このことから、「もんじゅ」の設計から試運転に至るまでの品質保証活動の活動状況について点検した。

（1）設計・製作等に係る品質保証体系・活動の点検

活動については、運転事象の「もんじゅ」関連部門及びメーカの設計管理、製作管理等について、「原子力発電所の品質保証指針」（JEAG401-1993）に記載されている要求事項に今回の事故の反省から脱出したい項目を付加して確認すべき事項を整理し、点検した。その結果、運転事象の「もんじゅ」に関わる品質保証活動が行われていたが、度詰めやの設計管理や製作後の管理が不十分であったことから、今後の品質保証活動を確保するため、設計・製作管理の強化を図るため設計審査を含めた事前の事前審査が十分に充実している必要があることを指摘した。また、メーカーにおいても係わられたシステムにより活動が行われていることを確認したが、ASMEの改訂情報が設計担当者に伝達されていなかったこと、温度計取や等含む配管系の設計に関して設計図に対しての指摘がされなかった等の問題点を指摘した。なお、これらメーカーに対する指摘事項は、事故により既に適切な改善措置がとられていることを確認した。

（2）運転手順書等の作成・改訂に係る審査、承認体制の点検

運転手順書の作成・改訂は当社が承認する必要があることである。設計・製作等の改善に対応するため、更にFBR特有事項については大洗工学センターの検討を待つこととして、運転手順書等の審査基準を改訂した。さらにFBR特有箇所については大洗工学センターの検討を待つこととして、運転手順書等の審査、承認体制が充実していることを確認した。

（3）教育訓練体系の点検

教育訓練体系の点検は、各課事務の教育、運転員教育ともに層に応じた教育目標を明確に示し、ナトリウム漏洩事故後においてはナトリウム取り扱い訓練を強化する等の改善を行っていることが確認した。教育訓練の計画立案及び実施は担当課長の責任のもとで行われており、実際の評価、反映のシステムが明確にしていないことからは、所の教育担当を新たに設けて教育訓練の実施状況を把握しながら活動の推進を図ることとした。

（4）試運転時の運転体制の点検

「もんじゅ」の試運転においては、「もんじゅ」
建設施設内に試験運転の実施体制を整備し、各種委員会を設けて原子炉主任技術者、関係各課室の協力のもとで大洗工学センター及びメーカー技術者の支援を受けて実施してきたことを確認した。さらに改善策として、異常時の運転支援体制の強化が必要であることから、今後再起動までに検討して具体的な改善を図る。

(5) 新技術情報等の反映に係る実施体制の点検

最新型情報等の反映の仕組みと活動状況については、研究発表部門と技術交流、トラブル事例の評価・分析、情報に係る体制的な取組がなされてきたことを確認した。しかしながら、「もんじゅ」は研究開発段階における原子炉であることを踏まえて、技術の研究開発成果等の技術情報を評価検討する体制、方法等についてさらに改善する必要があることを認識し、新たに、技術者向けに、国際技術センターとの連携のもとで、効率的な運営を図っていく。

(6) 品質保証活動体制の点検（含自主保安強化）

上記の品質保証上の改善方針を実施に具体化し、実践していくためには、品質保証体制が妥当なものとなっていること、また、確実に職員に徹底していることが必要である。このため、

①「もんじゅ」の品質保証活動の推進体制は適切なものとなっているか
②品質保証活動及び活動が「もんじゅ」全体に浸透していきようとになっているか
③「もんじゅ」の品質保証活動が適切に評価され、その結果が確実に反映できるようになっていくかについて点検した。

点検の結果、品質保証委員会での課題解決への取組の強化、品質保証に関する教訓訓練の一層の充実、国際標準に照らした評価によるさらなる安全性・信頼性の取組の強化の必要性を挙げた。これらの改正目標設定の改善に伴う改善方針は以下の通りであるが、一部のものを既に改善活動がなされている。

① 本社に品質保証推進室（現：品質保証推進部以下同様）を、「もんじゅ」建設所に「もんじゅ」品質保証推進本部（現品質保証推進Gr）を設置し、活動の強化を図っている。

② 業務における10の要求を設定し、改善活動を展開中である。

③ 要求品質達成状況を確認し、改善プロセスに必要な担当者をも含めた改善活動を進めていく。

また、第三者からの客観的評価を受けるため、世界原子力発電事業者協会（WANO）のビアレビューを受けること等を検討する。

3. 「もんじゅ」の改革方針

もんじゅの安全性能の検討結果を基にした課題に対応するため、事故後の事故防止のための設備改善、設計手順の改善及び安全管理体制の改革に加え、今後、反映する方針及び研究開発課題を柱とする方針を整理し、「もんじゅ」改革方針として、表4のように取りまとめた。

<table>
<thead>
<tr>
<th>3. 「もんじゅ」の改革方針</th>
</tr>
</thead>
<tbody>
<tr>
<td>表4「もんじゅ」の改革方針</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>
表4 「もんじゅ」の改革方針

| 表4「もんじゅ」の改革方針
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>改革内容</td>
<td>改革効果</td>
</tr>
<tr>
<td>テラフーム化依存度の低減</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>舵装置・制御装置の簡素化</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>安全装置の整備</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>水素管理の強化</td>
<td></td>
</tr>
</tbody>
</table>

安全管理体制の強化

<table>
<thead>
<tr>
<th>水素管理の強化</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

今後の研究開発の課題

<table>
<thead>
<tr>
<th>今後の研究開発の課題</th>
<th>引用文献</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.1 建設改善

1. ナトリウム漏洩対策設備としての改善
 - ナトリウムの漏洩の発生防止、早期検出、拡散防止及び影響緩和のための改善策であり、これらの設計、製作、選択、検査等については、今後の改善に向けた検討を図ることとした。

2. プラント信頼性向上等をめざし、アルゴンガス系、燃料洗浄設備等を改善すること

サイクル構造設計 No.1 1998.12
3.2 運転手順書及び教育訓練の改善

(1) 異常時対応手順の改善
事故後、改訂・運用している異常時運転手順書に基づいて、総点検での箇所課題を踏まえ、運転手が異常時に対応する際の判断、異常時の運転操作がより確実に行えるよう、手順書全般について今後改善を進めていく。

(2) 運転員教育訓練の改善
運転手個人の能力を向上させるために、運転直感としての能力を向上させるために、機上訓練、シミュレーション訓練、実技訓練の体系的な改善やシミュレータ設備機能などのさらなる充実を進めている。

3.3 安全管理体制の改革
施設の安全運転と維持を最優先し、危機管理が適切に行われる組織、体制作りを行う。
プランの安全かつ安定な運転と維持管理を支える「もんじゅ」の品質保証活動について、今回総点検の結果を踏まえて、品質保証活動の実施とさらなる向上を図るものとする。また、最新技術情報の収集・反映のための体制の確立、技術的、能力の強化と継続を組織的に行い、第三者機関のレビューを受けること等により安全管理体制のさらなる向上を図る。

3.4 今後の確認事項
事故のために確認する事項や安全性、信頼性をさらさらに向上させるため将来に向けて必要な課題を逐次し、これらについては今後具体化を進めていく。

図7 2次冷却系の改良メカニズム

3.5 今後の研究開発等の課題
「もんじゅ」の安全性、信頼性の向上のための研究開発課題については計画的に実施し、「もんじゅ」に反映していく予定である。

4. おわりに
約1年半を費やして実施した「もんじゅ」の安全総点検では、ナトリウム漏洩関連設備、有機物FBR関連設備、水蒸気系等の従来技術の延長と考えられる設備等「もんじゅ」設備全般についての改善事項を数多く踏み出し、その改善方針を策定した。また、運転手順書類や品質保証関連の改善事項についても対応策を検討した。これらについては、改善した品質保証体制、体系のもので確実な具体化を進め、「もんじゅ」の運転再開までに必要な許認可手続きを含め、実施していく計画である。

今後の運転段階において確認すべき事項については、「もんじゅ」試運転計画の見直し検討段階で、確実に計画へ反映し、「もんじゅ」の安全性、信頼性を再確認していく。

参考文献
(1) 労働省、核燃料循環事業通用効果解明基調図に「もんじゅ」の安全性試験時の2次冷却系ナトリウム塩沸返し事故について（第6回報告書「もんじゅ」の安全監査機能実施終了報告書（平成6年5月））