【技術報告】

資料番号:6-3

高速中性子照射場としての高速実験炉 「常陽」のキャラクタリゼーション - 照射条件評価技術の現状と今後-

関根 鈴木	隆 惣十	青山	卓史	吉田	昌宏

大洗工学センター 照射施設運転管理センター 実験炉部

Characterization of Fast Neutron Field in the Experimental Fast Reactor JOYO

- Current Status on the Evaluation of Irradiation Test Conditions and Its Upgrade -

Takashi SEKINE Takafumi AOYAMA Akihiro YOSHIDA Soju SUZUKI

Experimental Reactor Division, Irradiation Center, O-arai Engineering Center

原子炉において照射試験を実施する場合、試験用集合体そのものの装荷の影響は言うに及ばず、運転 サイクルごとの燃料交換による炉心構成の変更、原子炉の運転に伴う燃料の燃焼や制御棒の運用等によ リ時々刻々変化していく核特性を精度良く把握すること、つまり照射場のキャラクタリゼーションが不 可欠である。このため、高速実験炉「常陽」では、1983年の照射用炉心(MK - 炉心)の運転開始以 来、約17年間にわたり、炉心核特性計算に加えてドシメータを用いた測定により照射場のキャラクタリ ゼーションを実施してきた。また、照射後試験施設で得られる種々の照射後試験データや「常陽」にお ける使用済燃料の燃焼度の測定データもキャラクタリゼーション結果を検証する貴重なデータとして有 効に活用している。

さらに、近年の照射試験の精度向上の要求に応えるため、「常陽」におけるキャラクタリゼーション 技術の高度化として、核計算の面では、計算精度に影響の大きい核定数の更新、線発熱評価法の見直 し、計算上の近似による精度低下の少ないモンテカルロ計算法の導入を、また実測ドシメトリーの面で は、ヘリウム蓄積型フルーエンスモニタの開発、Nbドシメータの実用化等の技術開発を進めている。

It is essential to precisely characterize the irradiation field in the reactor, considering not only the effect of loading the irradiation test subassemblies, but also core configuration, control rod positions and fuel burn-up. In the experimental fast reactor JOYO, the neutron field of the Mark- $^{\Gamma}$ core has been characterized since 1983 by means of reactor dosimetry based on the foil activation method, in addition to nuclear calculations. The data obtained from the post irradiation examinations and on site burn-up measurement were also used to validate the calculation results.

In order to meet the requirements to improve the precision of the irradiation tests in JOYO, the characterization techniques have been upgraded. The upgrades include a neutron cross section set and a gamma heating calculation, and applying the Monte Carlo calculation to treat the exact geometry. The Helium Accumulation Fluence Monitor (HAFM) and Nb dosimeter were also developed to improve measurements.

キーワード

高速炉、「常陽」、照射試験、照射後試験、中性子照射量、スペクトルアジャストメント、ドシメトリー、 炉心管理、線発熱、HAFM、モンテカルロ計算、輸送計算、燃焼度、放射化箔、JENDL、JFS

Fast Reactor, JOYO, Irradiation Test, Post Irradiation Examination, Neutron Dose, Spectrum Adjustment, Dosimetry, Core Management, Gamma Heating, Helium Accumulation Fluence Monitor, Monte Carlo Calculation, Transport Calculation, Burn-up, Activation Foil, Japanese Evaluated Nuclear Data Library, JAERI Fast Set 1.はじめに

大洗工学センターの高速実験炉「常陽」は、 1982年11月に照射用炉心(MK - 炉心)に組み 替えられ、FBR実用化のための燃料・材料開発を 目的とした広範な照射試験を実施しているほか、 近年は高速中性子照射場としての特徴を活かして 核融合炉材料の照射や、²³⁷Np、²⁴¹Am等の長半減 期マイナーアクチニドの消滅処理研究なども実施 している。これら照射試験では、中性子照射場と しての「常陽」の特性を正確に把握することが不 可欠であり、炉物理理論に基づく核計算と多重放 射化箔法によるキャラクタリゼーションを実施し ている。

また、照射技術や照射後試験技術の進展に伴っ て高まりつつある照射条件評価の精度向上への期 待に応えるため、各種キャラクタリゼーション法 の高度化に関する技術開発も進めている。本稿で は、「常陽」におけるこれらの技術開発の現状と 課題、将来計画について紹介する。

2. 測定によるキャラクタリゼーション

2.1 「常陽」の照射用炉心と中性子照射場

高速中性子照射炉心である常陽MK - 炉心 は、1983年に照射試験のための本格運転を開始し、 1997年までに性能試験サイクルを含め計33サイク ルの定格出力運転が行われ、現在はMK - 炉心 からMK - 炉心への移行炉心で運転を行ってい る。

常陽MK - 炉心は、定格熱出力100MWtで 1 サイクル70日運転され、定格出力時の最大高速中 性子束密度は3.1 × 10¹⁵n/cm²/secである。MK -

炉心は、18%濃縮ウランとプルトニウムの混合 酸化物燃料集合体67体、炭化硼素製制御棒 6 体、 燃料領域を取り囲むように配置された約240体の ステンレス鋼製の中性子反射体から構成される。 燃料領域は、高さ55cm、有効体積約230リットル で、燃料の上部と下部にも反射材としてステンレ ス鋼が装荷されている。MK - 炉心の主要特性 を、2002年に運転開始を計画している高性能炉心 (常陽MK - 炉心)³とともに表1に示す。

各種照射試験を高精度かつ高信頼度で実施する ため、大洗工学センター照射施設運転管理センタ ー実験炉部では、1982年のMK - 炉心運転開始 以来約17年にわたり、炉心構成マトリックス内を 初めとし、原子炉容器外側までの各位置の照射場 の各種キャラクタリゼーションを実施してきた。 その結果、それぞれの照射試験目的に応じ大きく 分けて、次のような4つの中性子照射場の利用が

表1 「常陽」MK - 炉心とMK - 炉心の仕様

炉心仕	様	MK -「 炉心	MK - 」炉心
原子炉出力 1 次系冷却材流量	MWt t/h	100 約2,200	140 約2,700
原子炉入口温度 出口温度		370 500	350
炉心高さ 炉心体積(最大) 燃料ピン外径 ²³⁵ U濃縮度 核分裂性Pu富化度	cm mm wt% wt%	55 約231 5.5 約18 全域で約21	50 約262 内側:約16 外側:約21
炉心最大 _{total} 炉心平均 _{total}	n/cm²/s n/cm²/s	4.9 × 10 ¹⁵ 2.8 × 10 ¹⁵	5.7×10 ¹⁵ 内側炉心: 4.5×10 ¹⁵ 外側炉心: 3.4×10 ¹⁵
最大余剰反応度 制御棒反応度 最大線出力 最高燃焼度	% k/k % k/k W/cm MWd/t	5.5以下 9以上 400 ピン平均で 75,000	4.5以下 420 ピン平均で 90,000
定格運転日数		1サイクル:70日 年間:4サイクル	1サイクル:60日 年間:5サイクル

可能となっている。

温度・中性子束とも高い燃料領域

燃料領域より中性子スペクトルが軟らかく、

強度も2桁程度まで低く選定できる反射体領域 温度は高いが、中性子スペクトルが反射体領 域よりさらに軟らかい炉心上部領域

中低速スペクトルが得られる原子炉容器の外 壁部

これらの各中性子照射場のキャラクタリゼーショ ンでは、3章で記述する核計算と並行して、各種 ドシメータによる測定を実施している。

2.2 ドシメータによるキャラクタリゼーション 「常陽」における測定ベースの中性子ドシメト リーでは、多重放射化箔をドシメータとして用い て測定した反応率から中性子照射量を評価してい る^{2),3)}。「常陽」における照射試験では、表 2 に示 すドシメータセットを標準的に用いており、これ らは、適用する照射場の中性子スペクトルにも依 存するが、おおよそ20MeVから100eVの範囲をカ バーするように選定されている。図1 にMK -炉心の燃料領域と反射体領域における典型的な中 性子スペクトルと、それに対するこれらの各ドシ メータの90%エネルギー感度範囲を示す。

「常陽」におけるドシメトリーでは、まず試験 片と一緒に照射した各ドシメータの放射化量をゲ ルマニウム半導体検出器を主体とするドシメトリ ーシステムで測定し、「常陽」プラントデータ収 録システムJOYDAS (JOYO Data Acquisition

ドシメータ 物質	形状	サイズ(mm)	反 応 非しきい反応	形 式 しきい反応
$\begin{array}{c} Co\\ Sc\\ Ti\\ Fe\\ Ni\\ Cu\\ Ta\\ Nb\\ ^{237}Np\\ ^{235}U\\ ^{238}U\\ ^{232}Th \end{array}$	ワイヤ(Co-Al、Co-V) Vキャブセル封入(Sc ₂ O ₃) ワイヤ ワイヤ ワイヤ ワイヤ ワイヤ ワイヤ マイヤ マイヤ マイヤ マイヤ マイヤ マイヤ マイヤ マイヤ マイセ レ封入(NPO ₂) Vキャブセル封入(UO ₂) Vキャブセル封入(UO ₂)	1.0 1.5×8.0L 0.5 0.75 0.75 0.5 0.0051t 1.5×8.0L 1.5×8.0L 1.5×8.0L 1.5×8.0L	 ⁵⁹Co(n,)⁶⁰Co ⁴⁵Sc(n,)⁴⁶Sc ⁵⁹Fe(n,)⁵⁰Fe ¹⁸¹Ta(n,)¹⁸²Ta ²³⁵U(n, f)FP ²³²Th(n,)²³³Th 	 ⁴⁶Ti(n, p)⁴⁶Sc ⁵⁴Fe(n, p)⁵⁴Mn ⁵⁶Ni(n, p)⁵⁵Co ⁶³Cu(n,)⁶³Co ⁹³Nb(n, n')^{83m}Nb ²³⁷Np(n, f)FP ²³⁸U(n, f)FP ²³²Th(n, f)FP

表2 「常陽」標準ドシメータセット

System) で採取した1時間ごとの原子炉運転履 歴データを基に反応率を算出する。これにより得 られる反応率と断面積セットから、別途計算で求 めたスペクトルを初期推定値として、中性子スペ クトル解析コードパッケージ"NEUPAC-Jlog" を用いて、中性子スペクトルの最適解を求める (アジャストメント)。このコードでは、反応率R(E) [断面積 (E)×中性子束 (E)のエネルギー積分] で表される不定型線形方程式を、ベイズ (Baves) の定理に基づいて誤差が最小になるように統計的 手法で解いて最確スペクトルを得る。そして、得 られたスペクトルから各種ウインドウ関数を用い て、目的とする中性子フルーエンス、原子はじき 出し損傷率 (dpa/sec) He生成率等を算出する。 これら一連の中性子スペクトル解析フローは図 2 に示すとおりである。

ここで、解析結果の精度を確保する上で重要な NEUPAC用の断面積セットには、ENDF/Vドシ メトリーファイル、JENDL・3ドシメトリーファ イル、IRDF・85等から作成した共分散誤差付きの 103群断面積セット(上限20MeV、下限0.001eV)

を用いている。

中性子スペクトルの解析結果の一例として、ア ジャストメント前後(前の値は核計算で求めた初 期推定値そのもの)の反応率のC/E(計算値と測 定値の比)を表3に示す。これから分かるように、 アジャストメントによりC/Eは平均値で1.46から 0.96に大きく改善される。

また、ドシメータで測定した反応率により中性 子照射量(中性子束)をアジャストメントした結 果と、後述する「常陽」炉心管理コードシステム MAGIによる7群拡散計算の結果の比較を図3に 示す。これらに示すように、燃料領域における C/Eの平均は約1.05であるが、反射体領域のそれ は0.6~1.5である。このように、反射体領域では、

No 核 反 応		アジャストメント前		アジャストメント後	
INO.	NO. 172 / V. //C	C/E	誤差	C/E	誤差
1	⁵⁹ Co(n,) ⁶⁰ Co	0.932	0.13	0.980	0.06
2	⁴⁶ Ti(n, p) ⁴⁶ Sc	1.719	0.23	0.947	0.14
3	⁵⁸ Fe(n,) ⁵⁹ Fe	1.184	0.18	1.163	0.12
4	⁵⁴ Fe(n, p) ⁵⁴ Mn	1.577	0.19	1.020	0.08
5	⁵⁸ Ni(n, p) ⁵⁸ Co	1.504	0.20	0.990	0.09
6	⁶³ Cu(n,) ⁶⁰ Co	2.146	0.20	1.087	0.08
7	²³⁷ Np(n, f) FP	1.367	0.19	1.022	0.14
8	²³⁵ U (n, f) FP	1.179	0.12	1.050	0.06
9	²³⁸ U (n, f) FP	1.512	0.19	1.037	0.06
	平 均	1.458		1.033	

表 3 アジャストメント前後の反応率のC / E(炉心第1列: JENDL-3)

(C:7群拡散計算、E:アジャストメント)

燃料領域から離れるにつれてMAGIによる核計算 の精度が低下し、実測のドシメトリーによる精度 改善が有効かつ重要である。

3.1 「常陽」炉心管理コードシステムの概要

「常陽」は小型高速炉心であるため中性子の漏 洩が大きく、かつ、炉心燃料に比べて核物質量が 少ない、あるいは全く含まない照射試験用燃料や 材料を炉内に装荷するため、濃縮U(²³⁵U濃縮度 約18wt%)とPu(Pu富化度約30wt%)の混合酸 化物を炉心燃料に用いて運転に必要な反応度を確 保している。このため、中性子スペクトルが硬く、 燃料領域内では核分裂性物質が燃焼により消費さ れる割合に比べて親物質の転換が少ない(内部転 換比が小さい)特徴を持つ。

「常陽」の炉心管理計算では、上記の特徴を踏 まえ、中性子束の詳細分布や微細なエネルギース ペクトルの計算よりも、むしろ過剰反応度や炉心 全体の出力分布及び燃焼度分布といったバルクの 炉心特性の把握に重点を置いた計算法を採用して いる。「常陽」MK - 炉心の炉心管理コードシ ステムMAGIは、各運転サイクルの炉心構成や運 転履歴を模擬して核熱流力カップリング計算を行 う総合炉心特性評価システムであり、燃料交換計 画の策定等の炉心管理及び中性子照射量等の評価 に用いている⁴⁾。

図 4 に示すMAGIによる核特性解析では、炉心 体系を水平方向については8.15cmピッチで配列 されている各集合体を六角格子(集合体当たり1 メッシュ)に、軸方向については燃料領域 (55cm)とその上下のステンレス鋼反射体を含む 140cmの計算範囲を20メッシュに分割した3次元 6 角格子(Hex-Z)でモデル化し、中性子7群 (10MeV~0.00001eV) 線3群(14MeV~20keV) の拡散計算を実施している。

核計算では、使用する断面積セットが計算精度 に大きく影響するため、信頼性と精度の面から実 機への適用性を確認しつつ適宜更新を図ってお り、現在はJENDL・2 (Japanese Evaluated Nuclear Data Library, Ver.2)をベースとしたJFS・3・J2の 70群の断面積を、別途詳細計算した領域依存の70 群スペクトルで7群に縮約したものを使用してい る。また、最新のJENDL・3ライブラリーに基づ く炉定数セットJFS・3・J3.2についても「常陽」 MK - 炉心への適用性評価を進めており、MK -炉心のキャラクタリゼーションでは標準的に使用 する計画としている。

一方、線の生成断面積及び反応断面積について は、6章で記述する遅発核分裂 線生成データを追 加した修正New・POPOP4を用いて、RADHEAT・V3

コードにより計算したものを用いている。

MAGIによる計算結果は、運転開始時に実施し た出力分布測定試験、各運転サイクルの運転特性 試験、炉心構成要素の照射後試験等の結果に基づ いて適宜補正している。

過剰反応度及び制御棒価値については、各運転 サイクルごとに測定しており、その結果から、 MAGIを用いて、それぞれ±0.1% k/kk'、±5% で予測可能であることを確認している。

中性子照射量については、2章で記述したドシ メトリーによる中性子スペクトルのアジャストメ ントを行っており、燃料領域においてはパルク計 算のMAGIによる中性子照射量と実測ペースの値 の比(C/E)は、炉心中心部で1±0.05程度であ る。

照射試験用の燃料要素や材料試験片の照射条件 評価では、試験用集合体内の非均質性が照射量に 影響するため、MAGIで求めた均質化中性子束を 一群ポテンシャル理論コード(ESPRIT-J)で補 正して着目するポイントの中性子束を求めてい る。また、拡散計算のMAGIでは、十分な精度が 得られない反射体領域、炉心上部領域、原子炉容器 の外壁等における中性子束・線束については、 2次元輸送計算コードDOT3.5やDORTによる透過 計算を併用して照射量の評価精度を確保してい る。

3.2 炉心管理コードシステムの高度化

「常陽」の高度化計画(MK - 計画)の一環 として、高精度化した炉心管理コードシステム (HESTIA)を開発している。ここでは、運転サ イクルごとの炉心構成の変化や燃焼履歴の模擬等 の炉心管理計算としての機能に加えて、炉心全 体、とりわけ炉心燃料のキャラクタリゼーション の精度向上に必要な改良を行い、照射集合体内部 の詳細な評価については次に述べるモンテカルロ 計算の適用により実現することとした。その概要 を表4に示すが、

表4 炉心管理コー	ドシステムの高精度化
-----------	------------

		MAGI	HESTIA
計算体系		Hex-Z	Tri-Z
炉定数セット		JFS-3-J2	JFS-3-J3.2
径方向メッシュ数 / 集合体		1	24
軸方向メッシュ幅(燃料領域)		5cm	2.5cm
エネルギー 群数	中性子	7	18
		3	7

中性子の計算点である空間メッシュ及びエネ ルギー群数の増加

精度の高い断面積セットの導入 により、核計算法の高精度化を図る。 について は、制御棒及び反射体と隣接し、集合体内の中性 子束・スペクトルの局所的な変化が大きい領域で の照射条件の評価精度を向上させるため、計算体 系及びエネルギー群数を、従来のHex・Z体系、中 性子7群、線3群から、Tri・Z体系、中性子18 群、線7群へ詳細化する。

集合体当たりのメッシュ数については、「常陽」 の集合体サイズであれば径方向メッシュ数を24と すれば、メッシュ分割の影響を無視できることを 確認している。図5に燃焼率の測定値と計算値の 分布を示すが、メッシュの詳細化により、制御棒 や反射体に隣接した集合体内の径方向位置によっ ては、評価精度が最大約10%改善されている。ま た、中性子及び 線のエネルギー群数についても、 中性子18群、 線7群とすることにより、過剰反 応度や出力分布等のバルク核特性の評価精度が、 詳細なエネルギー群での計算と同程度に確保でき ることを確認している。

についても、先に述べたように最新のJFS・ 3・J3.2セットの炉心管理計算への適用性をMK -

移行炉心で見極め、MK - 炉心では標準核定 数に採用する予定である。 4.キャラクタリゼーション法の高度化

4.1 照射集合体内の詳細中性子束分布の計算 照射試験用集合体内の中性子照射量評価におい

コンパートメント等の内部構造により非均質 性が強い

制御棒の隣接位置あるいは燃料と反射体の境 界に装荷される

等の理由により、局所的な中性子束勾配やスペク トル変化が大きいため、バルクの炉心特性の把握 に重点を置いた炉心管理コードシステムでは、 個々の試験用燃料ピンや照射試料の照射条件を精 度良く評価できない。このため、中性子エネルギ ーを連続で取り扱え、複雑な幾何学形状を正確に 模擬できるモンテカルロ法を導入し、照射試験用 集合体内部の中性子照射量の評価精度向上を図っ ている。モンテカルロ計算コードは、近年の計算 機の高性能化に伴って著しい進展をみせている が、拡散計算や輸送計算の収束条件に比較して十 分な統計精度を確保するためには計算時間を要す ることと、炉心全体での燃焼計算が実用化に至ら ないため、炉心管理コードシステムの燃焼計算で 得た組成を入力条件とした照射試験用集合体内部 の中性子照射量の評価に限定して使用している。

評価対象及び解析条件

本手法の適用例として、燃料と反射体の境界に 位置する炉心第 5 列の [5F2] 位置に装荷された 計測線付燃料照射試験用集合体(INTA·2)の中 性子束をモンテカルロコードMCNPで評価した結 果⁵⁾について説明する。INTA·2の装荷位置と構造 を図 6 に示す。INTA·2は、装填される試験用燃料 ピンが19本と炉心燃料集合体の約1/6であり、これ が二重のラッパ管内に収納されている。MCNPに よる計算は、全炉心をモデル化して行った。評価 対象のINTA·2集合体については、集合体内の試 験用燃料ピンレベルまで形状を詳細に模擬し、他 の集合体についてはMAGIと同様に、Hex・Z体系 で均質にモデル化した。中性子束は、固定中性子 源モードで解析し、INTA・2集合体については燃 料ペレット内の核分裂による発生中性子を中性子 源とし、その他の集合体については、MAGIで計 算した中性子発生個数を入力値として与えた。ま た、核分裂中性子スペクトルは、1 MeVの中性子 による²³⁹Puの核分裂スペクトル(Watt型)を使 用した。断面積は、JENDL・3.2ペースのFSXLIB ライブラリーを使用した。

MCNP**の計算精度の検証**

本手法による中性子照射量の評価精度を検証す るため、照射後試験で測定した核分裂生成物であ る¹⁴⁸Ndの生成量について、計算値と実測値の比 較を行った。MCNPの計算では、各試験用燃料ピ ンについて、中性子束より求めた核種ごとの核分 裂率と原子数及び照射時間から核分裂発生数を求 め、これに¹⁴⁸Ndの核分裂収率を乗じ、全燃料核 種について総和をとることにより、重金属元素当 たりの¹⁴⁸Nd生成量を算出した⁶⁾。

MCNPによる計算値と実測値(測定法は5章参 照)を比較して図7に示す。¹⁴⁸Nd生成量の径方 向分布は、集合体中心の燃料要素で最小となり、 炉心中心側及び反射体側で大きくなっている。こ れは、炉心中心側の中性子束が最も高いことと、 反射体側では中性子束は減少するが、中性子スペ クトルが軟化することにより相対的に核分裂率が 増加するためであり、MCNPの計算では、このス ペクトル変化の効果が反映されている。¹⁴⁸Nd生 成量の計算値と実測値との比(C/E)は0.99~1.0 であり、両者は誤差範囲内で一致した。一方、 MAGIは均質組成を用いて評価しており、3本の 燃料要素の平均に近い値となっている。

以上の結果から、拡散計算では精度が十分でな

図 7 ¹⁴⁸Nd生成量の比較

かった照射位置における中性子照射量をMCNPにより精度良く評価できることが確認できた。

4.2 新型ドシメータの開発

He蓄積型フルーエンスモニタ(HAFM)の開発 最近の傾向として照射試験が長期化・多様化す るうえ、照射試験条件に対する精度向上の要求も ますます高まってきているため、測定手法の高度 化の一環として従来用いてきた多重放射化箔法に 加え、図 8 に示すHAFM (Helium Accumulation Fluence Monitor)の開発を進めている⁷⁾。

HAFM法は、(n,)反応等で生成するHe原子数 を質量分析器で測定することにより中性子照射量 を求める手法である。この手法では、放射化箔法 における線のような測定対象量の減衰がない、 材料の照射脆化に寄与するHe生成量が直接得ら れるなど、ドシメトリー上の大きな利点を有して いる。このHAFMを高速炉ドシメトリーに適用す ることにより、多重放射化箔法との併用による中性 子照射量の精度と信頼性の向上とともに、原子炉 構造材や核融合材料のHe脆化を評価する上で重 要なHe生成量を直接測定することが可能となる。 1)HAFM素子及び測定装置

HAFM素子には、高速炉スペクトル場において 中低速エネルギー中性子に対して感度を有するボ ロンと、高速中性子に対して感度を有するBeと AIを選定した。これらの素子は、生成したHeを 蓄積するため、直径約1.3mm、全長約7mmのバ ナジウムキャプセルに封入されている。

測定装置は、HAFM素子をバナジウムキャプセルとともに溶融し、蓄積したHeガスを放出させる溶融用電気炉とHe原子数を測定する四重極型 質量分析計を主要部とする。これに、質量分析計の感度較正のための標準Heガス調製部が接続され、これらの真空排気系と装置制御及びデータ処 理用のパーソナルコンピュータから構成される。

HAFM**測定システムの概略系統図を図**9に示す。 2)質量分析計の感度較正

He原子数は、較正済みの質量分析計により測定する。質量分析計の感度較正曲線は、Cu、Al、 Vの金属片に九州大学所有のタンデム加速器で既 知量のHeイオンを撃ち込んだ標準試料を測定す ることにより求めた。その結果、本装置の測定範 囲である10¹³~10¹⁵(個/試料)において、He原子 数と出力電圧には良好な直線性があり、測定値の ばらつきは4%(1)であることを確認した。

3)弥生較正照射による中性子照射量の測定精度

次に、東京大学「弥生」炉の標準照射場で較正 照射したHAFMを用いて、本測定装置による中性 子照射量の測定精度を評価した。「弥生」炉の各 中性子場における各HAFM素子(90%濃縮B及び Be)のHe生成に対するエネルギー感度領域を図 10に示す。Bについては、グローリー孔とブラン ケット実験孔では10keV~1MeVの高速中性子、 ファーストカラムでは10keV以下の低エネルギー 中性子がHeの生成に大きく寄与する。また、Be については、2 MeV以上の高速中性子がHeの生 成に寄与する。

HAFMと多重放射化箔から評価した中性子照射

量の比(HAFM/多重放射化箔)を図11に示す。 すべての照射位置及びHAFM素子について、 HAFM法と多重放射化箔法による中性子照射量は 測定誤差内で一致した。この結果から、HAFM法 により、種々のスペクトル場での中性子照射量を 誤差5%の精度で測定できることを確認した。

東京大学の高速中性子源炉「弥生」の標準中性 子場で較正照射試験を行った結果、HAFMはほぼ 実用化の域に達したことから、「常陽」実機での 試験的な使用を開始した。

Nb ドシメータの開発

⁹³Nb(n, n)^{93m}Nb反応を用いたドシメータは、 半減期が約13年と長く、長期積算型モニタになる ことと、約0.1MeV以上の高速中性子に反応断面 積を有しており、材料照射試験用ドシメータとし て極めて望ましい性質を有している。しかし、生 成核種(^{93m}Nb)が放出する放射線は約16.6keV及 び18.6keVの特性X線であり、エネルギーが低い ため、ワイヤや金属箔状のまま計測すると、自己 吸収(放射線がドシメータ内を通過する際にドシ メータ物質との相互作用により減衰すること)に 対する補正が大きくなり、測定精度が低下する。 そこで、硝酸とフッ酸の混合溶液で溶解し、少量 の溶液をラミネートシート上に蒸発乾固させて放 射化量を測定する手法を適用した。

これまでに約5 集合体分のNbドシメータにつ

図11 「弥生」較正照射での中性子照射量の比較

いて、本手法により放射化量を測定し、これを用 いて中性子スペクトルのアジャストメントを行っ た結果、Nbドシメータを用いない場合に比べて 約1 MeV以上のエネルギーの中性子スペクトル が約2%改善されることを確認できた。

5.PIEデータによる評価精度の確認

これまで記述してきた「常陽」の照射場のキャ ラクタリゼーションについて、計算ペースのキャ ラクタリゼーション結果の信頼性を確認するた め、照射後試験(PIE:Post Irradiation Examination) データによる妥当性評価を行っている。PIEは、 非破壊試験と破壊試験に大別される。いずれも燃 焼で生成するFP核種に着目した測定法であり、 非破壊試験データとしては使用済燃料貯蔵プール で実施している燃焼度測定、また、破壊試験とし てはNd法が、それぞれの代表としてあげられる。

5.1 使用済燃料の燃焼度測定⁸⁾

「常陽」原子炉付属建家内水冷却池室の使用済 燃料貯蔵プールに燃焼度測定装置を設置し、原子 炉施設内での非破壊試験により、使用済燃料の燃 焼度分布を測定している。

「常陽」の使用済燃料集合体は、ナトリウムを 除去した後、水とともにステンレス鋼製の容器 (缶詰缶)に封入された状態で冷却プールの貯蔵 ラック内に貯蔵している。この使用済燃料を容器 ごと図12に示す架台に設置して上下駆動・回転駆 動させ、水中に固定した高純度Ge半導体検出器 により 線プロファイルを測定する。得られた

図12 燃焼度測定装置の概略図

線スペクトルを解析し、着目するFP核種(¹⁴⁴Pr) の軸方向分布から使用済燃料集合体の燃焼度分布 を評価する。

本装置で測定した軸方向燃焼度分布と炉心管理 コードシステムMAGIによる計算値を相対分布で 比較したものを図13に示す。両者はおおむね一致 するが、燃料上部付近では、制御棒の挿入効果に 起因すると考えられる計算値の過大評価がみられ る。

5.2 Nd法による燃焼率データ

Ndは、希土類元素に属し、酸化物として燃料 ペレット中に固溶し、セシウムのように温度勾配 等による移動がない。Ndの安定同位体の生成量 は、燃料の核分裂数に比例することから、軽水炉 等でも燃焼率の指標に使われており、核分裂収率 の精度が高い¹⁴⁸Ndが用いられる。

破壊試験では、同位体希釈質量分析法⁹により ¹⁴⁸Nd生成量を測定し、これを核分裂収率で除し

て核分裂数を求め、核分裂物質量で割って燃焼率 に換算する。これまでに約11体分のMK - 炉心 燃料集合体のデータ(燃焼率で約0.3~8.7atom%) が取得されており、測定値とMAGIによる計算値 を図14に比較して示すが、両者は5%以内で一致 している。

 6.照射試料の発熱評価精度の向上(線発熱計 算法の高精度化)

材料照射試験では、試料の照射温度が重要なパ ラメータの一つであるため、主要発熱源である 線発熱量を精度良く評価することが求められる。 このため、「常陽」におけるキャラクタリゼーシ ョンの 線発熱計算では、 線生成データライブ ラリNew・POPOP4に基づく 線発熱定数を用い てきた。しかし、これまで文献等では核分裂に伴 う遅発 線(以下、遅発 線)に関する十分なデ ータが報告されていなかったため、 線発熱にお いてこの遅発 線の寄与を考慮できず、照射温度 の精度を確保する上での課題の一つであった。

James, Sher¹⁰⁾の報告にあるとおり、即発核分裂 線(以下、即発線)の放出エネルギーが6~ 8 MeVであるのに対し、遅発 線の放出エネルギ -は 5 ~ 7 MeVであり、この寄与は 線発熱量 の計算精度に大きく影響する。また、遅発線は、 即発 線と比べてスペクトルが軟らかいことか 線発熱計算においては、スペクトルの違い 5. を考慮する必要がある。このため、遅発線の放 出エネルギーとスペクトルの文献調査を行い、既 存のNew · POPOP4にこれを追加して新たなライ ブラリー(修正New·POPOP4)を作成すること とした。使用するデータには、実測による遅発 線スペクトルに、理論計算による短半減期のFP の寄与を考慮した吉田らの評価値¹¹⁾を用いること **とした。なお、上記の評価は、**²³⁵U、²³⁸U、²³⁹Pu 及び²⁴⁰Puの主要な核分裂核種のみを対象として おり、高次のPu**同位体である**²⁴¹Puと²⁴²Puについ ては、核分裂断面積のエネルギー依存性が類似し ている²³⁹Puと²⁴⁰Puのデータを用いることとした。

作成したライブラリーを検証するため、MK -炉心第3列の燃料領域に装荷した温度制御型材料 照射装置(MARICO)の線発熱密度を評価した。 MARICOには断熱構造の照射キャプセルが装荷さ れ、熱電対により照射試験片の照射温度がオンラ インで記録されている。核計算で求めた発熱量と の比較では、キャプセル構造をモデル化し、キャ プセル外面の冷却材温度を初期値とした有限要素 法コードFINASの熱伝導計算を行い、熱電対によ る温度を与えるステンレス鋼の 線発熱密度を求 め、これを用いた。

解析は、日米共同高速炉遮蔽実験¹²⁾で用いた標 準システムを用いた。すなわち、実効断面積は、 JENDL-2をベースにした100群の遮蔽用炉定数 JSDJ2/JFTJ2と修正New-POPOP4を用いて、 RADHEAT-V3により作成した。これをANISN-ORNLの一次元輸送計算による中性子束を重みと して中性子21群、線7群に縮約した。これを輸 送コードDORTに入力し、二次元RZ計算(固定線 源、P3-S30)により中性子束、線束を求めた。

DORTの計算値で評価したステンレス鋼の 線 発熱密度と測定値の比較を図15に示す。これより、 遅発 線を考慮しない場合、すべてのキャプセル 位置で計算値は測定値を過小評価し、C/Eは 0.70±0.04であった。一方、遅発 線を考慮する ことにより、計算精度が向上し、C/Eが0.95± 0.05に改善された。

材料照射試験では照射試料の発熱は 線発熱で 決まるため、今回の修正New・POPOP4を採用す ることによって炉内照射時の試料温度の予測精度 を向上できた。

この成果は炉心管理コードシステムMAGIの中 性子束評価の高精度化に寄与した。図16に炉中心 面におけるステンレス鋼の線発熱密度を比較し て示すが、遅発線を考慮することにより線発 熱量が最大約1.5倍に増加するため、中性子によ る発熱の割合が相対的に低下し、燃料領域の出力 分担は98%から96%に低下した。これに遅発線 の考慮による核分裂当たりの放出エネルギーの見 直しを加えると、従来過大評価していたMAGIの

中性子束は約5%低くなり、図14に示したMK 炉心燃料の燃焼率のC/Eは、1.04±0.08から
 0.99±0.08に改善された。

7.おわりに

照射試験炉では、一般的な炉心管理のための核 特性の把握に加えて、照射場における照射条件を 明確にすることが必要かつ不可欠である。このた め、「常陽」では照射用炉心であるMK - 炉心 での運転開始以来、性能試験を皮切りに約17年間 にわたって様々な炉心核計算とドシメトリーによ るキャラクタリゼーションを実施してきた。その 結果、MK - 炉心では、燃料領域では計算のみ で約5%、また反射体領域でもドシメータで補正 することによりそれにほぼ匹敵するモニタ精度で 各種照射試験を実施することが可能となった。

現在、「常陽」は2002年に運用を開始する MK - 炉心への移行途中にあるが、このMK -

炉心は燃料領域が拡大されて2領域になるとと もに原子炉出力が140MWtに増大され、中性子束 も約1.3倍となり、効率的かつ効果的な各種照射 試験が可能となる。この高性能MK - 炉心を最 大限に活用するためには、照射場の早期キャラク タリゼーションが急務であり、これにはMK -炉心で蓄積した炉心運用経験と本稿で報告したキ ャラクタリゼーション経験が有効に反映されるも のと期待されている。

8.謝辞

本技術開発を行うにあたり、名古屋大学の井口

哲夫教授に、「弥生」炉でのHAFMの較正照射と照 射条件評価を実施していただき、有益な助言と御 指導を賜りました。また、三菱総合研究所の佐藤 理氏にはMCNPによる計算法について多くの助言 をいただくとともに、ドシメトリー測定では検査 開発(株)の枡井智彦氏及び佐井川拓也氏に、炉心 管理コードによる計算ではアイ・ティ・ジェイ(株) の加藤雄一氏にそれぞれご協力いただきました。 ここに記して謝意を表します。

参考文献

- 1) 有井祥夫 他:"高速実験炉「常陽」の炉心高性能化計画 (MK- 計画)", 原子力誌, Vol. 38, No. 7, p. 27-34 (1996).
- 2)青山卓史,鈴木惣十:"高速実験炉「常陽」における計測技術", PNC TN9420 96-058, p.11-16 (1996).
- 3) AOYAMA, T., et al.: "CURRENT STATUS AND UPGRADING ACTIVITY OF REACTOR MATERIAL DOSIMETRY IN THE EXPERIMENTAL FAST REACTOR "JOYO", Proceedings of

9th International Symposium on Reactor Dosimetry, Prague, Czech, September 2-6, (1996).

- 4) 有井祥夫,青山卓史,鈴木惣十:"高速実験炉「常陽」MK-炉心の炉心・燃料管理経験",原子力誌,Vol.39,No.4,p.315-325 (1997).
- 5)関根 隆,青山卓史 他:"「常陽」照射試験における照射条件 評価精度の向上", JNC TN9400 99-017 (1999).
- 6)吉川 勝則 他:"高速炉軸非均質燃料の照射挙動 燃焼特性 評価",日本原子力学会「1993春の大会」要旨集L1(1993).
- 7) 伊藤主税 青山卓史 他:"He蓄積型中性子フルーエンスモニタの測定精度", PNC TN9410 98-008 (1998).
- 8) 高松 操,青山卓史 他:"使用済高速炉燃料の中性子放出率の 測定と評価", PNC TN9410 98-011 (1997).
- 9) Atom Percent Fission in Uranium and Plutonium Fuel (Neodymium) Annual Books of ASTM Standard, E321-79 (1971).
- 10)Sher, R. "Fission Energy Release for 16 Fissioning Nuclides", Proceedings of Conference on Nuclear Data Evaluation Method & Procedures (1980).
- 11) Yoshida, T., et al.: "Calculation of the Delayed Fission Gamma-Ray Spectra from U-235,-238, Pu-239,-240, and Pu-241; Tabular Data", JAERI-M 89-037 (1989).
- 12) 庄野彰他:"大型高速炉遮蔽解析手法の開発JASPER(日米高速 炉遮蔽実験)実験解析の成果",原子力誌 Vol.38, No.9, p.760-770 (1996).

サイクル機構技報 No.6 2000.3