3-8 Material Allowing Stable Fuel Supply to Fusion Reactor

Development of Advanced Tritium Breeder Materials for Fusion Reactor

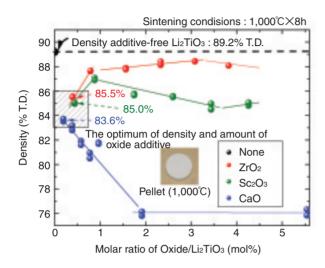


Fig.3-20 Density of Sintered Li₂TiO₃ with different amounts of oxide additives

The density of the sintered pellet was restrained by adding an oxide (ZrO₂, Sc₂O₃, and CaO) to Li₂TiO₃. The reduction of tritium release due to grain growth when Li₂TiO₃ is used for a long time at high temperatures could be prevented by adding the oxide as a grain growth control material.

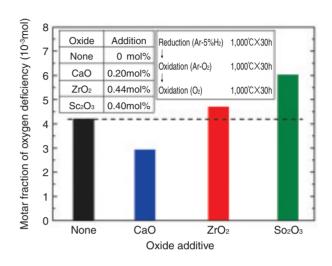


Fig.3-21 Molar fraction of oxygen deficiency of Li₂TiO₃ with oxide additives

Because tritium, the fuel of the fusion reactor, is collected by hydrogen (H_2) gas, Li_2TiO_3 is used in an H_2 atmosphere. Ti in Li_2TiO_3 was reduced in the hydrogen atmosphere, causing oxygen loss, but the oxygen loss could be lowered by adding CaO.

Tritium (T) doesn't exist in the natural world, but a fusion reactor uses deuterium (D) and T as fuel in the DT nuclear fusion reaction. Therefore, it is necessary to irradiate lithium (Li) filled to the fusion reactor blanket with neutrons, thus producing T artificially. Among materials including Li, Lithium titanate (Li₂TiO₃) has a good T release properties and so is attracting attention. On the other hand, when Li₂TiO₃ is used in an H₂ atmosphere for a long time at high temperature, crystal grains grow, and the Ti in Li₂TiO₃ is reduced. Thus, there is a problem that the amount of the T release decreases. It is necessary to develop a method of controlling Li₂TiO₃ crystal grain growth so that it is not reduced easily with the H₂ gas. This research dealt with improvement of Li₂TiO₃ by the addition of oxides.

CaO, ZrO₂, and Sc₂O₃ were investigated as the added oxide. The sample was sintered at 1,000°C, and made into pellets (Fig.3-20). The dependence of decrease in density after sintering upon addition of small amounts of oxide was

obtained from the density of the sintered pellets and the amount of the oxide addition (Fig.3-20).

Next, the reduction of Li_2TiO_3 with added oxide in the H_2 atmosphere was examined by means of thermogravimetry. If Li_2TiO_3 is reduced with H_2 , O loss is caused. The amount of the oxide addition was adjusted to achieve the optimum density as shown in Fig.3-20. The color of the sample changed from white into thin blue if the sample was reduced, and a weight decrease due to O loss was observed. Fig.3-21 shows the calculated O deficiency in the samples. Li_2TiO_3 with CaO added had less oxygen deficiency than the other kinds of Li_2TiO_3 .

The overall results suggest that the oxide additives are able to control not only the growth of the grain size but also the amount of oxygen deficiency. Thus, the present study confirmed the efficacy of oxide addition to Li₂TiO₃ in developing high-temperature resistant breeding materials.

Reference