## 4-2 Study of a Dilute Magnetic Semiconductor by Observing Soft X-ray Magnetic Circular Dichroism

— Way to Improve Spintronics Material Performance Revealed by Synchrotron Radiation —

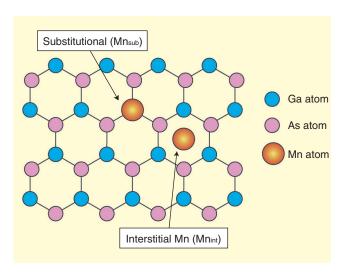



Fig.4-4 Schematic view of Ga<sub>1-x</sub>Mn<sub>x</sub>As (111) surface Mn<sub>sub</sub> and Mn<sub>int</sub> represent the Mn ions replacing Ga ions and inserted in interstices, respectively.

Electrons have two characteristics, "charge" and "spin". In semiconductor electronics, we use charge only. On the other hand, spintronics technology utilizes spin combined with semiconductor electronics technology. For practical use of spintronics, a material is needed which exhibits semiconducting and ferromagnetic properties and a Curie temperature  $(T_c)$  exceeding room temperature (RT). Among dilute magnetic semiconductors (DMS's), Ga<sub>1-x</sub>Mn<sub>x</sub>As is a promising candidate, but  $T_c$  above RT has not been achieved yet. This material's ferromagnetic property is caused by Mn ions (Mn<sub>sub</sub>) substituting for the Ga ions. Because Ga<sub>1-x</sub>Mn<sub>x</sub>As is grown under thermal non-equilibrium conditions, however, it is difficult to avoid the formation of the interstitial Mn ions (Mn<sub>int</sub>) as shown in Fig.4-4. It has been speculated that the existence of  $Mn_{int}$  might suppress the  $T_c$ . The relation between  $Mn_{int}$  and  $T_C$  has not been revealed yet.

In order to investigate the influence of the  $Mn_{int}$  on  $T_c$ , we prepared two samples which have different  $T_c$  and amounts of  $Mn_{int}$  (Sample A:  $T_c \sim 60$ K, Mnint / all Mn ions  $\sim 26\%$  and B sample:  $T_c \sim 40$ K,  $Mn_{int} \sim 33\%$ ) and performed soft x-ray magnetic circular dichroism (XMCD) experiments in the Mn

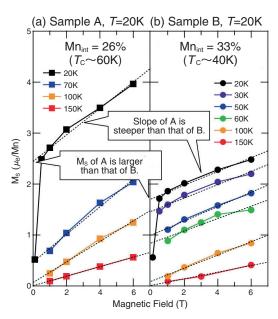



Fig.4-5 Magnetic dependence of the spin moment ( $M_s$ ) of  $Ga_{1x}Mn_xAs$  at T=20K

(a) Sample A with  $T_{\text{C}} \sim 60 \text{K}$ ,  $Mn_{\text{int}}$  / all Mn ions  $\sim 26\%$  (b) Sample B with  $T_{\text{C}} \sim 40 \text{K}$ ,  $Mn_{\text{int}}$  / all Mn ions  $\sim 33\%$ . The amount of  $Mn_{\text{int}}$  was estimated from our XMCD experiments.

 $L_{2,3}$  absorption edge region using synchrotron radiation. From the XMCD experiment, we could extract the value of spin moment (M<sub>S</sub>) of each Mn atom. The XMCD experiments were done at the JAEA beamline BL23SU of SPring-8.

Fig.4-5 shows the magnetic field (H) dependence of  $M_S$  estimated from the XMCD experiment at T=20K. In the sample A, both the spontaneous magnetization ( $M_{S\,H=0\,Tesln}$ ) and the slope of the H dependence of  $M_S$  are larger than those in the sample B. Here, the slope corresponds to the magnetic susceptibility. This indicates that the antiferromagnetic (AF) interaction between the  $M_{Sub}$  and  $M_{Tint}$  should exist. Therefore, the  $M_S$  of the  $M_{Tint}$  is antiparallel to that of  $M_{Sub}$ , In other words, the existence of  $M_{Tint}$  prevents increase in  $T_C$ . The present results indicate that the AF interaction between the  $M_{Tint}$  plays an important role in the magnetic behavior of a typical  $Ga_{1-x}Mn_xAs$ . In addition, the amount of the  $M_{Tint}$  ions should have a strong relation to  $T_C$ .

The findings should give a valuable insight into the performance improvement of the magnetic properties of many DMS's in addition to  $Ga_{1-x}Mn_xAs$ .

## Reference

Takeda, Y. et al., Nature of Magnetic Coupling between Mn Ions in As-Grown Ga<sub>i-x</sub>Mn<sub>x</sub>As Studied by X-ray Magnetic Circular Dichroism, Physical Review Letters, vol.100, issue 24, 2008, p.247202-1-247202-4.