In recent years, much interest has been focused on hydrogen-based energy systems. The key of this technology is high-density storage of hydrogen, and hydrogen-absorbing (HA) alloy is useful for this purpose. The HA alloy absorbs the hydrogen to form metal hydride. In this process, the hydrogen molecule is dissociated into H atoms and these are stabilized at an interstitial site of the lattice. Detailed understanding of the interstitial H state is thus important for further improvement of HA properties.

We studied the interstitial H state in a material related to the HA alloy using positive muons (μ^+). The μ^+ can be regarded as a light isotope of 1H since it possesses charge $+e$ and mass $\sim 1/9 m_n$, where m_n is the mass of a proton. Therefore, chemical properties of the μ^+ in condensed matter are considered to be identical to those of 1H except for isotope effects. The μ^+ implanted into materials stops at the interstitial site and decays into a positron and two neutrinos. The positron is preferentially emitted in the direction of the μ^+ spin, which evolves via magnetic interactions with surrounding electron and nuclear spins. Detailed analysis of the time evolution of the μ^+ spin provides us with information on the magnetic environment at the μ^+ site.

We launched this research project with investigation of the interstitial H state in a rare-earth-based intermetallic compound PrPb$_2$, related to the typical HA alloy MnNi$_2$ (Mn: mixture of light rare-earth elements). First, the μ^+ site in PrPb$_2$ was determined to be the midpoint between two Pr ions (Pr') as shown in Fig.6-9, using the μ^+ spin rotation and relaxation method (μ^+SR) in a high magnetic field. μ^+SR measurements in zero magnetic field were also performed, and the characteristic spectrum shown in Fig.6-10 was obtained in the paramagnetic state. This spectrum indicates quantization of the magnitude of a hyperfine field that is generated at each μ^+ site. From detailed analysis, it was clarified that coupling between Pr' and μ^+ spins is anisotropically enhanced as a result of deformation of the f-electron state owing to the μ^+ charge. The quantum character of the hyperfine field strongly supports this conclusion.

The present result suggests the importance of the electrostatic interaction between the f-electrons and the interstitial H in HA alloys. We plan further μ^+SR studies in HA alloys which have commercial promise, to clarify the relation between this interaction and the HA properties.

Reference