5-3 High-Precision Measurement of Nuclear Materials — Proposal for the Advanced HKED System —

Fig.5-8 Schematic view of the advanced HKED system The advanced HKED system is composed of an energy recovery linac (ERL), a laser supercavity, and KED/XRF detectors. Mono-energetic X-rays generated by collision of high-energy electrons and laser quanta are used for irradiation of sample solutions. Transmitted and scattered X-rays are detected by the KED and XRF detectors, respectively. The size of the ERL accelerator can be reduced using a 6-loop configuration.

Nuclear material accountancy is an important issue for nuclear safeguards. Generally, destructive analysis with mass spectrometry is used for density determination of nuclear materials. However, non-destructive analysis is desired because of simplicity and rapidity of the analysis, as well as for the reduction of discharged nuclear wastes. Hybrid K-edge densitometry (HKED) is a non-destructive analytical method of nuclear materials dissolved in solution. This technique can be applied for quantification of uranium (U) and plutonium (Pu) concentrations.

In the existing HKED system, bremsstrahlung X- rays from an X-ray tube are used as the incident photon source. The broad energy distribution of the bremsstrahlung X-rays produces background counts due to inelastic scattering that affect the counting precision. However, if mono- energetic X-rays are used, efficient KED and X-ray fluorescence (XRF) measurements are possible through reduction of the background counts. Thus, we have proposed an advanced HKED system with mono-energetic X-rays. Fig.5-8 shows a schematic view of the advanced HKED system.

To evaluate the performance of the advanced HKED

Fig.5-9 X-ray response spectrum

A Monte Carlo simulation code was used to investigate the X-ray responses from a sample including U (200 g/ ℓ) and Pu (2 g/ ℓ). The results for mono-energetic and bremsstrahlung incident X-rays are shown with red and blue lines, respectively. A high-peak intensity of the Pu characteristic X-rays (PuK_{a1}) can be obtained through efficient measurement of the PuK_{a1} line using mono-energetic X-rays.

system, X-ray responses were investigated using a Monte Carlo simulation code. The result is shown in Fig.5-9. The peak intensity of the Pu characteristic X-rays (PuK_{al}) can be enhanced using mono-energetic X-rays. Consequently, both the ratio of the peak to the background count and ratio of the peak to the total count are improved in comparison with those obtained when using bremsstrahlung X-rays. The counting statistics in the region of the U K-absorption edge in the KED spectra are also increased using mono-energetic X-rays.

Analysis of low concentrations of neptunium (Np) is difficult with the existing HKED system because of the highbackground counts from the Pu characteristic X-rays. However, with the advanced HKED system, by adjusting the energy of the incident X-rays between the K-absorption edges of Np and Pu, it is possible to measure the Np characteristic X-rays without any influence from the Pu characteristic X-rays.

The present technique is expected to facilitate the nondestructive rapid, and precise density determination of nuclear materials in solutions at nuclear power plants and nuclear reprocessing facilities.

Reference

Shizuma, T. et al., Proposal for an Advanced Hybrid K-edge/XRF Densitometry (HKED) using a Monochromatic Photon Beam from Laser Compton Scattering, Nuclear Instruments and Methods in Physics Research A, vol.654, issue 1, 2011, p.597-603.