13–6 Development of Domestic ⁹⁹Mo Production by (n, γ) Method – Fabrication Technology for High-Density MoO₃ Pellet –

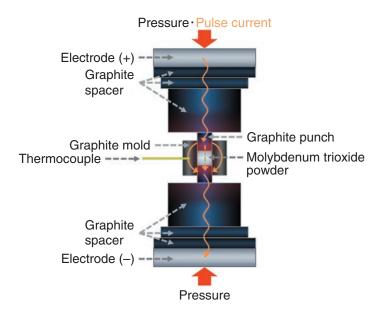
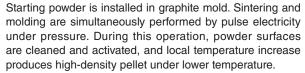
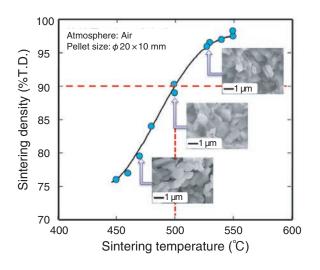




Fig.13-11 Schematic diagram of spark plasma sintering method

In Japan, about 1400000 cases are diagnosed using nuclear medicine every year. About 900000 of these nuclear medicine diagnoses use technetium-99m (99mTc), whose half-life is 6 h. ^{99m}Tc is produced as a daughter nuclide from molybdenum-99 (⁹⁹Mo), whose half-life is 66 h. The quantity of ^{99m}Tc demanded in Japan is ranked as second in the world, after only the U.S.A., but all of the 99mTc is imported from abroad. A stable supply of ⁹⁹Mo in Japan might be difficult to obtain because of troubles with transportation and other problems. Therefore, the establishment of domestic production of ⁹⁹Mo is an important issue for Japan. Two methods are used to produce ⁹⁹Mo by nuclear reactors, the nuclear fission method and the neutron activation method $[(n, \gamma) \text{ method}]$. The Japan Materials Testing Reactor (JMTR) is developing the (n, γ) method for ⁹⁹Mo production from the viewpoints of physical protection of nuclear materials and the reduction of highly radioactive waste.

⁹⁹Mo is produced in molybdenum trioxide (MoO₃, sublimation temperature: 795 °C) by the (n, γ) method in nuclear reactors. Next, irradiated MoO₃ is resolved into 6M sodium hydroxide (NaOH), and then ^{99m}Tc is extracted from the solution. The technical issues in this method are the establishment of a high production rate of ⁹⁹Mo and the extraction of ^{99m}Tc with a high purity and radioactivity concentration. For that purpose, a fabrication method for high-density MoO₃ pellets was also developed in this study to increase the amount of ⁹⁸Mo per unit volume and to optimize

Fig.13-12 Relationship between sintering temperature and sintering density of MoO₃ pellet

The sintering density increases with increasing sintering temperature. The target density (90%T.D., T.D.: theoretical density) was attained by sintering at about 500 °C. On the other hand, changes in grain growth were not observed below a sintering temperature of 550 °C.

the characteristics such as solubility.

As the first step, fabrication tests of high-density MoO_3 pellets were conducted using the spark plasma sintering method, as shown in Fig.13-11.

This method results in a high-purity pellet because no binder is added, and the sintering temperature is low. The pellet properties were measured for various sintering temperatures and sintering densities. In this result, the target density was attained by sintering at a temperature above 500 °C, as shown in Fig.13-12. Scanning electron microscopy observation of the MoO₃ pellet revealed that grain growth did not occur below a sintering temperature of 550 °C, and the grain size of the MoO₃ pellet was almost the same as that of the starting powder. Next, MoO₃ pellets were oxidized in atmosphere as an oxidization treatment, and the solubility into 6M NaOH was measured. The result confirmed that the MoO₃ pellet dissolved within the target time, and the obtained solution was clear and exhibited high purity.

The above results demonstrate that a technique for fabricating high-density MoO₃ pellets from an irradiated target was established, and the prospects are bright for domestic ⁹⁹Mo production by the (n, γ) method.

The present study was performed as part of the program "Technology development of domestic ⁹⁹Mo/^{99m}Tc production by (n, γ) method in JMTR" commissioned by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

Reference

Nishikata, K. et al., Fabrication and Characterization of High-Density MoO₃ Pellets, Proceedings of the 2012 Powder Metallurgy World Congress & Exhibition (PM 2012), Yokohama, Japan, 2012, 8p., in CD-ROM.