
8-3 Developing Rapid Method to Analyze Radioactive Waste — Developing Method to Analyze ^{242m}Am in Low-Level Radioactive Waste —

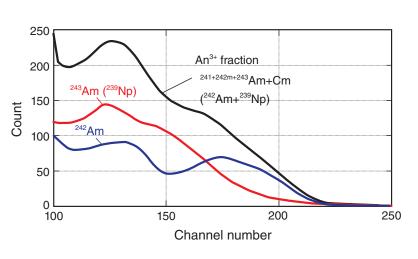


Fig.8-10 β -ray spectrum of ²⁴²Am and so on

Fig.8-9 System of extraction chromatography A cartridge-type of extraction chromatographic resin was used. Solution in a reservoir is pumped from downstream into the cartridge.

An³⁺ fraction contains ^{241+242m+243}Am and Cm, and β -ray spectrum of ²⁴²Am and ²³⁹Np, which are progeny nuclides of ^{242m}Am and ²⁴³Am, respectively is obtained. ²⁴³Am source was prepared to estimate β -ray spectrum derived from ²³⁹Np, which was subtracted from the spectrum of the An³⁺ fraction to obtain the β -ray spectrum of ²⁴²Am.

The radioactive inventory of low-level radioactive waste (LLW) must be evaluated to dispose of LLW. However, some nuclides that are important for safety are difficult to analyze, such as americium-242m (^{242m}Am). Thermal ionization mass spectrometry (TIMS) is a conventional method to determine the content of ^{242m}Am. ^{242m}Am can also be analyzed by α -ray of curium-242 (²⁴²Cm), which is the progeny nuclide of ^{242m}Am (²⁴²Cm method). Although the TIMS measuring time is short, more sample is required than for ²⁴²Cm method, it takes several months to determine the ^{242m}Am content. In addition, both methods require separation of Am from Cm.

In the present study, we developed a new method to determine the ^{242m}Am content that involves measuring β -ray emission from ²⁴²Am, which is the progeny nuclide of ^{242m}Am. To measure β -rays from ²⁴²Am, Am must be separated from β -ray emitting nuclides in LLW. Therefore, we used a separation method based on extraction chromatography (Fig.8-9). First, trivalent actinides (An³⁺) and lanthanides (Ln³⁺) were separated from the major elements in LLW by

using transuranic resin (Eichrom Technologies), which has selectivity for transuranic elements. Next, An³⁺ was separated from Ln³⁺, which has similar chemical properties and contains some β -ray emitting nuclides, by using a tetravalent actinide resin (Eichrom Technologies). This An³⁺ fraction contains Cm, but the influence of Cm on the β -ray measurement can be subtracted because there is no β -ray emitting Cm in LLW. Conversely, β -rays from neptunium-239 (²³⁹Np), which is a progeny nuclide of ²⁴³Am, have to be detected and considered. Therefore, a ²⁴³Am source was prepared to measure β -ray spectra of ²³⁹Np, which were subtracted from those of An³⁺ to obtain the radioactivity of ²⁴²Am (Fig.8-10). As a verification, the value obtained was compared with that determined by the ²⁴²Cm method.

The separation step in the new method to determine the radioactivity of ²⁴²Am is simpler than that for the TIMS and ²⁴²Cm methods. Less sample is required by this new method than by the TIMS method and is comparable to that required by the ²⁴²Cm method. The measuring time for this new method is considerably shorter than that for the ²⁴²Cm method.

Reference

Shimada, A. et al., A New Method to Analyze ^{242m}Am in Low-Level Radioactive Waste Based on Extraction Chromatography and β -ray Spectrometry, Analytical Chemistry, vol.85, no.16, 2013, p.7726–7731.