The highly active liquid waste generated by the reprocessing of spent fuel is vitrified with using a glass melter at the Tokai Vitrification Facility (TVF). The fiber cartridge (70 mmφ × 70 mmL), which can absorb the highly active liquid waste (HALW), is used for this melter. The cartridge-impregnated HALW is melted in the melter by the application of direct current and the melt is flown into a canister. This vitrification method is called the liquid-fed Joule-heated ceramic melter (LFCM).

Currently, more advance methods are being investigated for the purposes of removal of some fission products (FPs) before vitrification, or to change the ration of glass components, in order to decrease vitrified waste. To minimize radioactivity and the generation of radioactive waste, stable isotopes are commonly used as simulants in vitrification experiments instead of the high-level radioactive FPs, which can lead to the possibility to obtain more data. Before performing the experiment under high temperature, theoretical calculations were used to estimate the thermal behavior of the vitrified waste. As thermodynamic properties are necessary for these theoretical calculations, some missing properties were estimated by computational analysis. The ternary phase diagram shown in Fig.8-21 was constructed as an example.

The search for an enhanced glass medium is carried out gradually with the research and development of vitrification technology. The iron phosphate glasses are an enhanced glass medium which may be able to load various elements and which could prove to be a suitable medium for low-level radioactive waste.

Fig.8-20 Conceptual structure of the melter at the TVF

Fig.8-21 Liquidus surface projection for the SiO₂-B₂O₃-Na₂O ternary system

The glass phase diagram can be constructed using our established thermodynamic database. This figure shows the SiO₂-B₂O₃-Na₂O ternary system in air with an oxygen concentration of 20.95 %, which is called the liquidus surface projection. The relation between the glass composition and the liquidus point can easily be estimated using this figure.

References