Research Field Index

Research Field	Page	Торіс	Title
Highlight	11	1-0	Research and Development on the Post-Accident Environmental Restoration and Decommissioning of Fukushima Daiichi NPS Providing Advanced Scientific Knowledge by Concentrating Expertise
	29	2-0	Nuclear Safety Research Implementing Continuous Improvements in Safety
	36	3-0	Advanced Scientific Research Advanced Science Pioneers the Future
	41	4-0	Nuclear Science and Engineering Research Fundamental Technologies for Nuclear Energy Innovation
	49	5-0	Applied Neutron and Synchrotron-Radiation Research and Development Contributions to Developments in Science, Technology, and Academic Research Using Neutron and Synchrotron Radiation
	58	6-0	HTGR Hydrogen and Heat Application Research Research and Development on HTGR, Hydrogen Production, and Heat Application Technologies
	66	7-0	Research and Development of Fast Reactors Endeavors in Research and Development of Fast Reactor Cycle for Nuclear Innovation
	72	8-0	Research and Development on Fuel Reprocessing, Decommissioning, and Radioactive Waste Management
	87	9-0	Computational Science and E-Systems Research Computational Science for Nuclear Research and Development
	93	10-0	Development of Science & Technology for Nuclear Nonproliferation Development of Technology and Human-Capacity Building in the Nuclear- Nonproliferation and Nuclear-Security Fields to Support the Peaceful Use of Nuclear Energy
Radiation, Accelerator and	37	3-1	Unveiling the Unique Fission Process of Fermium Nuclides - Clues towards Understanding the Existing Limit of Super-Heavy Elements -
Beam Technologies	39	3-3	Observation of a New Double Lambda Hypernucleus during a J-PARC Experiment - As a Microscopic Image, the Second Case Where the Nuclide is Identified -
	42	4-1	Contribution by Nuclear Physics to Transmutation Study – Accurate Prediction of Deuteron Transmutation –
	45	4-4	Accurate Detection of Particles in Accelerators, Space, and Medicine – Understanding the Mechanism that Determines the Scintillation Light Yields –
	48	4-7	Improving the Prediction Accuracy of Spallation Product Yields – Improving a Stochastic Model of Nuclear Fission Induced by a High-Energy Particle –
	50	5-1	Long-Term, Stable Production of a High-Intensity and High-Quality Beam – Development of an RF-Driven Negative Hydrogen Ion Source –
	51	5-2	Linking Spin-Fluctuations to Electron Correlations – A Combined Neutron and ARPES Study –
	52	5-3	Two-Dimensional Neutron Measurement with High Sensitivity and High Precision – Development of a Bump Cathode Neutron Detection Element –
	53	5-4	Measuring the Neutron Brightness Distribution from Liquid Hydrogen Moderators – Measuring and Validating the Neutron Brightness Distribution from Liquid Hydrogen Moderators at a High-Intensity Spallation Neutron Source –
	55	5-6	Towards Higher-Performance Steels Elucidating the Microstructural Formation Mechanism via Electron and Neutron Beams –
	56	5-7	Successful Observation of the Melting and Solidification Phenomena of Metal with a Time Resolution of One Millisecond - Contributing to the Advancement of Laser Welding Technology -

Research Field	Page	Торіс	Title
	57	5-8	Compound Developed to Recognize Slight Size Differences of Rare-Earth Elements – Towards Efficient Recycling of Lanthanides –
Fission Energy Engineering	15	1-4	Uncertainty Estimation in the Criticality of Nuclear Systems Containing Fuel Debris – Development of a Criticality Calculation Method for Randomly Distributed Materials –
	30	2-1	Uncertainty Reduction in Source Term Evaluation – Dependence of Decontamination Factor on Aerosol Particle Number Concentration in Pool Scrubbing –
	59	6-1	Proposal of Innovative Nuclear Fuel Cycle Based on High Temperature Gas-Cooled Reactor - Reduction of Cooling Time of Potential Toxicity of Radioactive Waste -
	60	6-2	Towards Implementation of Improved HTGRs - Conceptual Design of an Experimental HTGR for Steam Supply Based on an HTTR -
	62	6-4	Toward Load-Following, Demand-Dependent Operation of an HTGR – Confirming the Thermal Load Fluctuation Absorption Characteristics of an HTTR –
	68	7-2	Clarifying the Discharge Behavior of Molten Core Materials – Simulated Experiments Using a Shallow Water Pool for Molten Core Discharge –
	69	7-3	Uncertainty Analyses of MA Sample Irradiation Test Data – For Better Utilization of the Rare Data –
Nuclear Plant Technologies	12	1-1	Estimate the State of the RPV and PCV after a Severe Accident – Upgrading of the Comprehensive Identification of Conditions Inside Reactor –
	32	2-3	Safety Evaluation Considering Uncertainties of Accident Progression – Development of Simulation-Based Risk Assessment Methodologies –
	35	2-6	More Rational Inspection of the Piping System $^-$ Evaluating the Ratio of Welds to be Inspected Based on a Risk Informed In-Service Inspection $^-$
	47	4-6	Estimation of Fission Product in a Light Water Reactor under a Severe Accident – Development of Fission Product Chemistry Database ECUME –
	67	7-1	Examining the Behavior of Core Elements during a Strong Earthquake – Development of 3-Dimensional Reactor Core Group Vibration Analytical Model –
Nuclear Fuel Cycle and Nuclear	13	1-2	Numerical Evaluation of Fuel Debris Hardness First-Principle Calculation of the Mechanical Properties of Fuel Debris
Materials	14	1-3	Degradation Mechanism of a BWR Control Blade Understanding the Behavior of Boron Compounds during a Severe Accident –
	17	1-6	Determination of the Optimum Shape of Hydrogen Recombination Catalysts – Hydrogen Elimination Effect Experimentally Verified for Full-Size Equipment –
	18	1-7	Estimating Radioactive Waste Inventory Sorption Behavior of Actinides on Zeolite –
	19	1-8	Towards Routine Analysis of Difficult-to-Measure Radionuclides – Preparation of Analysis Manuals for ⁹³ Zr, ⁹³ Mo, ¹⁰⁷ Pd, and ¹²⁶ Sn Waste –
	20	1-9	Assessing the Safety of Reusing Contaminated Rubble Restricted Reuse in the TEPCO's Fukushima Daiichi NPS Site –
	21	1-10	Development of Robot Simulator for Decommissioning Task Training – Multi-Copter Simulator and Virtual Operator Proficiency Training System –
	31	2-2	Toward a More Reliable Safety Evaluation for Loss-of-Coolant Accidents – Uncertainty Quantification of Fracture Limit of Fuel Cladding Tube –
	34	2-5	Detailed Investigation of the Fracture Toughness of a Reactor Pressure Vessel – Fracture Toughness Evaluation of Heat-Affected Zone under Overlay Cladding Using Miniature Specimen –

Research Field	Page	Topic	Title
	40	3-4	Superconductivity Driven by Ferromagnetic Fluctuations in the Uranium Compound UGe ₂ – Correlation between Superconductivity and Ferromagnetic Fluctuations Studied by Magnetic Measurements at High Pressure –
	43	4-2	Microscopic Corrosion Behavior in High-Temperature, High-Pressure Environments – In-Situ Measurement of Electrical Conductivity of Solution in Stainless Steel Crevices –
	44	4-3	Origin of Am/Cm Selectivity Elucidated by Chemical Bonding – Focusing on the Covalent Interaction between Metal Ions and Separation Ligands –
	70	7-4	Development of a Long Life Fast Reactor Control Rod – Irradiation Behavior of a Sodium-Bonded Absorber Pin –
	71	7-5	Advancing Microwave Heating Denitration Technology – Development of Particle Control Technology to Improve Powder Characteristics –
	74	8-1	Simplification of the Analysis of Uranyl Ions in Radioactive Wastes – Development of an Analytical Method with Capillary Electrophoresis Using Novel Fluorescent Reagents –
	75	8-2	Reducing the Generation of Uranium Waste Decontaminating Metal Using Acidic Electrolytic Water –
	76	8-3	Ensuring the Stability of Trench-Type Radioactive Waste Disposal Facilities – Examination of Waste Acceptance Criteria of Sand Filling to Reduce Voids in Waste Packages –
	78	8-5	Evaluating the Uncertainty of the Redox Potential in Groundwater – An Application Example Based on Monitoring Data of Water Quality in the Horonobe Area –
	79	8-6	Estimating the Hydraulic Conductivity around a Gallery before Excavation – An Estimation Method Applying the Mean Stress Index –
	80	8-7	Dating Calcium Carbonate Using a Micro-Scale Analytical Method – A Method for Tracing Prior Underground Water Environments –
	81	8-8	Chemical Analysis and Identification of Many Mineral Grains - New Technique to Elucidate the Mountain Uplifting Process -
	82	8-9	Unified Management of Repository Design Information – Development of a Design Support System for Geological Disposal Projects –
	83	8-10	Realistic Modeling of Tracer Migration in Rock Fracture – Effects of Fine-Scale Surface Alterations on the Tracer Retention in Fractured Crystalline Rock –
	84	8-11	Stabilization of Low-Level Radioactive Waste Solutions – Cement Solidification of Low-Level Radioactive Waste Solutions Containing Carbonates –
	85	8-12	Investigation of Fuel-Cladding Materials for the Reprocessing of Spent Nuclear Fuel – Evaluation of the Nitric Acid Resistance of New Materials Preventing Severe- Accident Progression –
	86	8-13	Predicting the Flow and Mixing Behavior in an Extractor – Simulating Fluidity, Dispersion, and Mass Transfer in a Centrifugal Contactor –
	90	9-3	Prediction of Laser Irradiation Condition in Laser Processing – Provision of Laser Irradiation Condition for Melting and Solidification Processing Using Computational Science Code SPLICE –
	94	10-1	Nondestructive Assay of Nuclear Materials Using γ-rays – Development of Simulation Code for γ-ray Elastic Scattering –
Fusion Energy Engineering	91	9-4	Modeling the Effects of Hydrogen on Metallic Materials Spontaneous Separation of Aluminum Grain Boundaries by Hydrogen –

Research Field	Page	Торіс	Title
Health Physics and Environmental Science	16	1-5	Measuring Alpha-Particle Emitters Flying in Nuclear Facility Buildings – A Highly Reliable Alpha Dust Monitor Using a GPS Scintillator Plate –
	22	1-11	Observed Decrease of Radiocesium in River Water - Result of Three-Year-Long Observation -
	23	1-12	Radiocesium Behavior from Forest to Stream Water and River – Understanding How Dissolved Radiocesium is Discharged from Upstream –
	24	1-13	Clarifying the Distribution of Sediment-Associated Radiocesium at the Bottom of a Pond without Sediment Sampling - Visualizing the Vertical Distribution of Sediment-Associated Radiocesium -
	25	1-14	Exploring the Migration of Radionuclides to the Deep Ocean – Elucidation of Subduction from the Vertical Distribution of Concentration –
	26	1-15	Quickly and Accurately Measuring Environmental Radiation Levels – Advanced Conversion Method for Airborne Radiation Monitoring –
	27	1-16	Evaluating the Effective Dose Based on a Detailed Radiation Map – Providing Protection from Radiation in the Specified Reconstruction and Revitalization Base –
	28	1-17	Modeling the Distribution of Air Dose Rates in Habited Areas of Fukushima Prefecture – Developing the 3D Air Dose Rate Evaluation System –
	33	2-4	Evaluating of Sheltering Effectiveness against Internal Exposure at a Nuclear Accident – Factors Affecting Sheltering Effectiveness and Influence of Environmental Factors on Indoor/Outdoor Ratio –
	38	3-2	How Removal of Strontium from Seawater ? – Use of Coprecipitation Method by Barite Controlled Chemical Composition –
	46	4-5	Evaluation of Exposure Doses Considering Variations in Physiques of Japanese – Completion of Adult Japanese Human Model Series –
	77	8-4	Improvement of Matching Method for Seepage Flow Analysis Application of Inversion for Seepage Flow Analysis in Multi-Layered Earthen Cover –
	88	9-1	Acceleration of Plume Dispersion Model – Reduced-Communication Algorithm for GPU-Based Supercomputers –
Others	54	5-5	Capturing of a Unique Spin Texture of a 4f Electron – Discovery of a Magnetic Skyrmion Lattice in the 4f Electron Magnet EuPtSi –
	61	6-3	Improving the Fuel Safety of High Temperature Gas-Cooled Reactors during Severe Oxidation Accident - Fabrication of Oxidation-Resistant Fuel Elements for Oxygen Ingress Accidents -
	63	6-5	Improving Hydrogen Production Efficiency Using Innovative Technologies – High-Efficiency Process Design of the Thermochemical IS Process –
	64	6-6	Reliability Improvements of Corrosion-Resistant Equipment for Hydrogen Production by the IS Process – Refined Quality Management of Glass-Lined Steel Material –
	65	6-7	Membrane Makes IS Process Chemical Reaction Efficiently – Use of an Ion-Exchange Membrane to Reduce Water Permeation by Cross- Linking –
	89	9-2	Matrix Solvers for Multiphase CFD Simulations with One Hundred Billion Grids – Communication Avoiding Multigrid Methods –
	92	9-5	AI-Assisted Acceleration of Quantum Simulations – Analysis of Strongly Correlated Electron Systems with Sparse Modeling –