Fukushima Daiichi NPS

About This Publication and the JAEA Organizational Outline

Research and Development Related to the Accident at the TEPCO's

10

Highlight Assistance in Environmental Restoration and Decommissioning 13 **Evaluation of Uranium Leaching from Fuel Debris in Water** 1-1 - Leaching Rate Evaluation Considering Effects of Concrete Components, and Comparison with Spent Fuel -14 Akira Nakayoshi **Distribution of Components in Fuel Debris** - Segregation of Gadolinium and Iron during Solidification Using Simulated Molten Debris -1-2 15 Ayako Sudo 50x Increase in Plasma Emission Intensity by Microwave 1-3 - Advanced Remote Analysis Technology for Fuel Debris Using Laser-Induced Breakdown Spectroscopy -16 Masaki Oba Clarifying the Warming Behavior of a Robot Test Pool 17 1-4 Measurement and Analysis toward Facility Utilization with User Needs – Ryoki Arakawa **3D Reconstruction of Structures from Images** - Development of Image Analysis Method to Support Remote Operation -1-5 18 Toshihide Hanari Chemisorption of Cesium on Structural Materials during SA 1-6 - Prediction and Verification of Thermodynamic Properties of Cesium Compounds -19 Chikashi Suzuki Hydrogen Release from Geopolymer by Gamma Irradiation - Reduced Hydrogen Yield of Bulky, Solidified, Water-Saturated Waste -20 1-7 Isao Yamagishi Accident Progression Analysis: Units 1–3 at the Fukushima Daiichi NPS 1-8 - Insights from International Benchmark Analysis Project -21 Hitoshi Tamaki **Cause of Cesium Concentration Change in Fish** 22 1-9 - Three Transport Pathways from Forests to Fish -Hiroshi Kurikami Fast and Easy Analysis of Tritium in Plants and Animals 1-10 Development of Rapid Organically Bound Tritium (OBT) Analysis in Marine Products – 23 Kenso Fujiwara How Does the Dose Rate Change after Decontamination? 1-11 - Effects of Land Use Type Revealed from Long-Term Monitoring Data -24 Shigeo Nakama **Radiocesium Behavior in River System** 1-12 - Relationship between Mineral Species and Radiocesium in Riverbed Using Microscopy -25 Hiroki Hagiwara

1-13	Cause of Radioactivity Concentration in Mushrooms – Cesium Selectivity Evaluation of Mushroom Pigment Norbadione A – Hiroya Suno	26
1-14	Estimation of Total Radiocesium Discharged from Fukushima Daiichi NPS to the Coast – Discharge Inventory Decreased to Approximately 1/100000 th Since the Accident – Susumu Yamada	27
1-15	Reconstruction of Atmospheric Release and Dispersion of Radioactive Materials by Computer Simulation — Contribution to the Refinement of Dose Assessment in the Early Stage of the Accident by Improving the Dispersion Calculation Optimization Method — Hiroaki Terada	28
1-16	Initial Air Dose Rate after the Accident at the Fukushima Daiichi NPS – Comparison between Fukushima and Chernobyl – Kazuya Yoshimura	29
1-17	Analyzing Decreasing Trends in Radioactivity and Dose Rate – Changes of Radiocesium Concentration in Soil and Air Dose Rate over Five Years – Satoshi Mikami	30
1-18	Assessment of External Exposure Doses in Daily Life – Development of Assessment Model Based on Local Radiation Surveys – Shogo Takahara	31

2 Research on Nuclear Safety and Emergency Preparedness

Highlight	Implementing Continuous Improvements in Safety and Emergency Preparedness	32
2-1	Measurement of Very Thin Liquid Film Thickness – Technical Development for the Evaluation of Liquid Film Dryout Behavior – Yuki Wada	33
2-2	Reliable Safety Evaluation for Reactivity-Initiated Accidents – Mechanical Property Evaluation of Fuel Cladding under Biaxial Stress Conditions – Takeshi Mihara	34
2-3	Effects of Stress on Oxidation near a Crack Tip – Toward an Understanding of the Mechanism of Environmentally-Assisted Cracking in Stainless Steel – Kuniki Hata	35
2-4	Preparing for Aftershocks After a Major Earthquake – Proposal of Risk Assessment Method Considering Large Aftershocks – Byunghyun Choi	36
2-5	Elucidating HEPA Filter Clogging under Organic Solvent Fire – Development of Severe Accident Assessment Method for Reprocessing Facilities – Takuya Ono	37
2-6	Rapidly and Widely Measuring Radiation from the Sky – Preparedness for Using Aerial Radiation Monitoring during a Nuclear Emergency – Akira Futemma	38

3 Advanced Scientific Research

Highlight	Advanced Science Pioneers the Future	39
3-1	Observing Giant Dipole Vibration in Fission Fragments – Toward Understanding the Fission Process – Hiroyuki Makii	40
3-2	Improving the Extraction Efficiency by Preventing Aggregation Phenomena of a Complex – Development of a Solvent Extraction Method Using the Strong Hydrophobicity of Fluorine – Yuki Ueda	41
3-3	Clarifying the Mechanism behind Superconductivity in Uranium Compounds – NMR Research to Reveal the Mechanism of Spin-Triplet Superconductivity – Yo Tokunaga	42
3-4	Detection of the Singularity of Magnets Using Rotation – Measuring the Angular Momentum Compensation, Key to Speeding Up Magnetic Devices – Masaki Imai	43
3-5	Closing in on the Longstanding Puzzle of Localized Electrons in an Electron-Conducting Oxide – Using Muons to Unveil the Nature of Localized Electrons in Hydrogen-Doped SrTiO ₃ – Takashi Ito	44
3-6	Revealing Unique Nucleus Shapes by Nuclear Reactions – Cluster Structure and Its Probability – Kazuki Yoshida	45

4 Nuclear Science and Engineering Research

Highlight	Fundamental Technologies for Nuclear Energy Innovation	46
4-1	Development of Photonuclear Data Library for International Contribution – Accomplishment of a Reliable Database Supporting the Use of Photonuclear Reactions – Nobuyuki Iwamoto	47
4-2	Development of Nuclear Data for LLFP Transmutation – Models to Predict the Nuclear Cross-Section of Long-Lived Fission Products (LLFPs) – Futoshi Minato	48
4-3	Accelerated Corrosion of Low-Alloy Steel at the Air/Solution Interface – Clarification of Corrosion Acceleration Mechanism from Structural Analysis of Rust Layer – Kyohei Otani	49
4-4	Extension of Applicable Range of ESR Dosimetry via Enamel Separation Techniques – External Exposure Dose Estimation of Wild Japanese Macaque in Fukushima Prefecture – Toshitaka Oka	50

4-5	Real-Time Estimation of Radiation Dose at Flight Altitudes – Development of Warning System for Aviation Exposure to Solar Energetic Particles (SEPs) – Tatsuhiko Sato	51
4-6	Separation of Minor Actinides Using Incinerable Extractants – Recovery of Minor Actinides and Rare Earth Elements in a Concrete Cell – Yasutoshi Ban	52
4-7	Validation of Nuclear Design Accuracy for ADS – Critical Experiment with Plutonium Fuel – Akito Oizumi	53
4-8	Development of Beam Window Materials for ADSs – Post-Irradiation Examination of Beam Window Materials through International Project – Shigeru Saito	54

5	Applied Neutron and Synchrotron Radiation Research and Development	
Highlight	Contributions to Developments in Science, Technology, and Academic Research	55
5-1	Toward Upgrading High-Intensity Proton Accelerators – A Radio Frequency Quadrupole Linac Using a New Beam Dynamics Design Scheme – Yasuhiro Kondo	56
5-2	Detection of Change in Hydrogen Bond in the Deep Earth – Direct Observation of Symmetrization at High Pressure by Neutron Diffraction – Asami Sano	57
5-3	Mitigation of Damage to the Target Vessel Wall – Enabled High-Power Spallation Neutron Target by Double-Walled Structure – Takashi Naoe	58
5-4	Enabling Material Analysis with Neutron Beams at Manufacturing Sites – Texture Measurement of Steel Materials Using a Compact Neutron Source – Pingguang Xu	59
5-5	Elucidation of Structural Fluctuations of Proteins – Observation of Structure and Dynamics of Protein by Neutron Scattering – Hiroshi Nakagawa	60
5-6	Structural Analysis of Ionic Liquid–Electrode Interface – Nano-Scale Analysis of the Interfacial Structure Using a Quantum Beam – Kazuhisa Tamura	61
5-7	Toward Next-Generation Memory with Low Power Consumption – Observation of Electronic Structure of Alumina Film for Nonvolatile Memory – Masato Kubota	62
5-8	Observation of Electrons in Unconventional Uranium Superconductor – First Observation of the Electronic Structure of UTe ₂ – Shin-ichi Fujimori	63

6	HTGR Hydrogen and Heat Application Research	
Highlight	Research and Development on HTGR, Hydrogen Production, and Heat Application Technologies	64
6-1	Whole Core Burnup Characteristic Evaluation Method Using Representative Impurities – Cost Reduction for HTGRs Using Inexpensive Graphite Materials – Shoichiro Okita	65
6-2	A Threefold Increase in Burnup of HTGR Fuel – Development on High-Burnup HTGR Fuel under International Cooperation – Koei Sasaki	66
6-3	Toward Harmonization with Renewable Energy – HTGR Concept for Accomplishing Hybrid Operation with Renewable Energy – Hiroyuki Sato	67
6-4	Toward Commercial Implementation of the IS Process with HTGRs for Hydrogen Production – Development of Strength Evaluation Method for Ceramic Structures – Hiroaki Takegami	68
6-5	Toward Metallic Sulfuric Acid Decomposers in the IS Process – Development of a Corrosion Test Apparatus without Sulfur Dioxide (SO ₂) Leakage – Noriaki Hirota	69
6-6	Toward Stable and Continuous Hydrogen Production by the IS Process – Development of a Pump Shaft Seal Technology for HI Solution Including Highly Concentrated I ₂ – Hiroki Noguchi	70
6-7	Impact of Exhaust Stack Collapse on the Reactor Building – Confirmation of the Integrity of the Reactor Building by 3D Model Collision Analysis – Masato Ono	71

Research and Development of Fast Reactors

Highlight	Enhancing the Ability of Research and Development	72
7-1	Toward Efficient Manufacturing of the Above-Core Structure – Routing Study of the Above-Core Structure with a Mock-Up Experiment – Kazuya Takano	73
7-2	Reliable Decay Heat Removal by Natural Convection – Core Cooling Experiment Using Dipped DHX and Development of Evaluation Method – Toshiki Ezure	74
7-3	Development of Fuel Assembly Analysis Method in Fast Reactors – Prediction of Thermal Hydraulics in Fuel Assembly with Inner Duct Structure (FAIDUS) – Norihiro Kikuchi	75

7-4	Development of Ultra-High Temperature Tolerant Fuel Claddings – Mechanical Properties of Oxide Dispersion Strengthened Steel Claddings at 1000 °C – Yasuhide Yano	76
7-5	Exploring an Ignition Mechanism of Hydrogen with Burning Sodium Mist – Visualizing the Ignition Process of Hydrogen Jets Containing Mist Caused by Sodium Leaks in Severe Accidents – Daisuke Doi	77

8 Research and Development on Fuel Reprocessing, Decommissioning, and Radioactive Waste Management

Highlight	Toward Decommissioning Nuclear Facilities and Managing Radioactive Waste	78
8-1	Toward Public Use of the Decommissioning Cost Estimation Code DECOST – Development of a Manual for the DECOST – Nobuo Takahashi	80
8-2	Radioactive Waste Confirmation Method for Rational Disposal – Study on the Evaluation Methodology of Wastes Generated from Post-Irradiation Examination Facilities – Akina Mitsukai	81
8-3	Complex Biological Effect of Low-Dose Radiation – Feature Extraction of Multidimensional Data Using Machine Learning – Norie Kanzaki	82
8-4	Radioactive Liquid Waste Management Technologies – STRAD Project for the Treatment of Radioactive Liquid Waste-Containing Chemicals – Sou Watanabe and Haruka Aihara	83
8-5	Assessing Underground Fracture Connectivity from the Surface – Development of a Single Borehole Investigation Method – Eiichi Ishii	84
8-6	Change in Permeability after Backfilling a Research Tunnel – Change in Hydraulic Conductivity in the Simulated Realistic Disposal Environment – Nobukatsu Miyara	85
8-7	Chemical Signatures Suggesting Recent Fault Activity – Detection of Elemental Changes due to Fault Activity – Masakazu Niwa	86
8-8	Visualization of Long-Term Variability in Groundwater Flow Conditions – Development of Evaluation Method for Variability of Groundwater Flow Conditions – Hironori Onoe	87
8-9	Mechanical Modeling of Buffer Materials – Applicability of Elasto-Plastic Constitutive Model under Saltwater Conditions – Yusuke Takayama	88

8-10	Unveiling the Interaction Mechanism of Fe (II) and Si – Characterization of Ferrous Silicate Co-Precipitates under Reducing Conditions – Paul Clarence M. Francisco	89
8-11	Analysis of Radioactive Samples by Plasma Generated in the Microchannel — Determination of Cesium in Highly Radioactive Liquid Waste by Liquid Electrode Plasma Optical Emission Spectrometry — Noriyasu Kodaka	90

9	Computational Science and E-Systems Research	
Highlight	Computational Science for Nuclear Research and Development	91
9-1	CFD Simulation of a Fuel Debris Air-Cooling Experiment – Validation of a Thermal-Hydraulic Model Using the Lattice Boltzmann Method – Naoyuki Onodera	92
9-2	Using Computer Simulations to Design a Superconducting Neutron Microscope – Simulating All Radiation Types inside the Neutron Microscope and Predicting Its Behavior – Alex Malins	93
9-3	Understanding the Deformation of Iron from the Movement of Atoms – Analysis of Screw-Dislocation Motion and Slip-Plane Transition by Atomistic Simulations – Tomoaki Suzudo	94
9-4	Multi-Phase Fluid Simulations Using the World's Largest GPU Supercomputer – Development of Communication-Avoiding Matrix Solvers on GPU – Yasuhiro Idomura	95

10 Development of Science & Technology for Nuclear Nonproliferation

Highlight Development of Technology and Human Capacity Building in the Nuclear Nonproliferation 96 and Nuclear Security Fields to Support the Peaceful Use of Nuclear Energy

	Nondestructive Assay of Nuclear Materials for Safeguards	
10-1	 Developing Practical Delayed Gamma-ray Spectroscopy Using PUNITA – 	97
	Tomoki Yamaguchi and Douglas Chase Rodriguez	