1–14 Selective Detection of Trace Sr Isotopes Using Lasers

-Simplified Pretreatment of Samples Containing Isobars and Stable Isotopes-

Fig.1-27 Element and isotope-selective laser resonance ionization of ⁹⁰Sr atoms

Owing to the presence of isotope shifts and hyperfine structures (⁸⁷Sr only), ⁹⁰Sr atoms can be isotope-selectively ionized using wavelength-tuned lasers.

Fig.1-28 Example of the observed ⁸⁸Sr and ⁸⁷Sr frequency spectra

Laser-3 frequency is scanned to observe the spectra of ⁸⁸Sr and ⁸⁷Sr using scheme (B) 689.4 nm–472.4 nm–404.2 nm. Splitting of the energy level of ⁸⁷Sr due to the hyperfine structure of the autoionization level can be observed.

Table 1-2 Measured optical isotopic selectivities of ⁹⁰Sr with respect to stable Sr isotopes (⁸⁴Sr, ⁸⁶Sr, ⁸⁷Sr, and ⁸⁸Sr) The measured ⁹⁰Sr optical isotopic selectivities with respect to stable Sr isotopes ranged from 10³ to 10⁵ for both resonance ionization schemes: (A) 689.4 nm–487.4 nm–393.8 nm and (B) 689.4 nm–472.4 nm–404.2 nm.

Scheme	⁸⁴ Sr	⁸⁶ Sr	⁸⁷ Sr	⁸⁸ Sr
(A)	4×10^{5}	1×10^4	2×10^{5}	5 × 10 ³
(B)	6×10^5	3×10^{3}	2×10^5	1×10^{4}

Strontium 90 (⁹⁰Sr, half-life of 28.8 years) is one of the major radionuclides that was released into the environment during the TEPCO's Fukushima Daiichi NPS accident in 2011. Because its biochemical behavior is similar to that of calcium, ⁹⁰Sr tends to accumulate in the human bones, causing long-term internal exposure.

Several methods have been reported so far for determining 90 Sr. These methods are classified into radiation measurement and mass spectrometry. The former is the conventional method of detecting β radiation from 90 Y, and it requires a time-consuming process of 90 Y separation; therefore, it is considered unsuitable for rapid analysis. The latter is a method of detecting 90 Sr⁺ ions after ionization, and an example is inductively coupled plasma mass spectrometry (ICP-MS). However, ICP-MS suffers from isobaric interference caused by zirconium 90 (90 Zr), and mass spectral interference of 88 Sr in samples with high concentrations of stable Sr isotopes.

In this work, we developed a device for measuring Sr^+ ions using a quadrupole mass spectrometer, where three wavelength-tuned lasers are used for element- and isotope-selective laser resonance ionization of ${}^{90}Sr$ atoms, as shown in Fig.1-27. Isotope shifts of stable Sr isotopes (⁸⁴Sr, ⁸⁶Sr, ⁸⁷Sr, and ⁸⁸Sr) and energy-level splitting of ⁸⁷Sr due to the hyperfine structure were observed for each of the two ionization schemes: (A) 689.4 nm–487.4 nm–393.8 nm and (B) 689.4 nm–472.4 nm–404.2 nm, both of which are expected to have high isotopic selectivity. Fig.1-28 shows an example of the observed ⁸⁸Sr and ⁸⁷Sr frequency spectra using scheme (B) where Laser-3 (404.2 nm) frequency was scanned. The measured ⁹⁰Sr optical isotopic selectivities with respect to the stable Sr isotopes ranged from 10³ to 10⁵ for both schemes, as shown in Table 1-2. Compared to the existing mass spectrometry, our method is expected to greatly simplify the sample pretreatment process, especially in the analysis of soil and marine samples containing large amounts of ⁹⁰Zr and stable Sr isotopes, respectively.

A part of this work was supported by the JAEA Nuclear Energy S&T and Human Resource Development Project through concentrating wisdom (JPJA18B18071760), "Development of technology for rapid analysis of strontium-90 with low isotopic abundance using laser resonance ionization".

(Yoshihiro Iwata)

Reference

Iwata, Y. et al., Isotope Shift and Hyperfine Structure Measurements on Triple Resonance Excitation to the Autoionizing Rydberg State of Atomic Strontium, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.275, 2021, 107882, 9p.