1–4 How to Effectively Remove lodate from Solutions?

- Coprecipitation of lodate with Barite (BaSO₄) Was Evaluated at a Molecular Level -

Fig.1-7 Design of IO₃⁻ **coprecipitation with barite** We add BaCl₂ and Na₂SO₄ into a solution containing iodate by adjusting the $[Ba^{2+}]/[SO_4^{2-}]$ molar ratio. Barite is rapidly precipitated, and iodate is effectively removed from solution even in the presence of competitive anions in solution.

Radioactive iodine (¹²⁹I) is of great concern owing to its high environmental mobility and long-term radiotoxicity (¹²⁹I: halflife = 1.6×10^7 years). In the environment, iodine exists in two oxidation states (-1, +5), and it is mostly dissolved in natural water and radioactive liquid wastes as iodide (I⁻) and iodate (IO₃⁻). To date, the formation of AgI is the only method available for I⁻ removal, and there is no effective method for removing IO₃⁻ from contaminated natural water and waste liquid. In the present study, we developed a new technique for removing radioactive IO₃⁻ from aqueous solutions by using barite (BaSO₄). Although a variety of toxic and/or radioactive elements in the cationic form and selenium (Se) oxyanions can be removed from aqueous solutions by coprecipitation with barite, the removal of IO₃⁻ had not been investigated yet.

Barite is rapidly precipitated by mixing BaCl₂ aqueous solution in Na₂SO₄ aqueous solution (= coprecipitation). A diagram of IO₃⁻ coprecipitation with barite is shown in Fig.1-7. This study investigated the coprecipitation of IO₃⁻ with barite and found that IO₃⁻ can be effectively removed by this method. The main parameter affecting iodate removal is the [Ba²⁺]/[SO₄²⁻] molar ratio in the initial aqueous solution. Results showed that iodate was effectively removed from the aqueous solution by coprecipitation when the [Ba²⁺]/[SO₄²⁻] ratio was high. Extended X-ray absorption fine structure analysis also indicated that the incorporated IO₃⁻ was strongly bound to the crystal lattice of barite by the substitution of the SO₄²⁻ site in the structure when the IO₃⁻ concentration was low. It is believed that the charge compensation problem due to the substitution of IO₃⁻ for SO₄²⁻ was achieved by the substitution of Na⁺ for the nearest Ba²⁺

Fig.1-8 Comparison of iodate removal between barite and Mg–AI layered double hydroxide (LDH)

The K_d values of iodate for barite and Mg-AI LDH in the presence of Cl⁻ ions are estimated. The K_d of Mg-AI LDH decreased with increasing competitive Cl⁻ concentration, while that of barite was nearly independent of the Cl⁻ concentrations.

because Na⁺, which was not detected in the barite prepared without IO_3^- , was detected in the IO_3^- -bearing barite $(2IO_3^- + 2Na^+ \Leftrightarrow Ba^{2+} + SO_4^{2-})$.

Subsequently, we investigated the influence of competitive anions on IO₃⁻ removal efficiencies by comparing with adsorption on hydrotalcite-like Mg-Al layered double hydroxide (LDH). Mg-Al LDH is a well-known inorganic layered mineral with a high anion exchange capacity, and the anion is intercalated into interlayer spaces. Many papers have reported on the removal of anionic contaminants by LDH. Fig.1-8 shows the distribution coefficient (K_d) of IO₃⁻ for barite prepared under the optimum condition and that for the Mg-Al LDH with and without the addition of NaCl in the initial aqueous solution. Kd is the ratio of concentrations of a solute (in this case, IO3-) between a liquid phase and a solid phase (barite or Mg-Al LDH). The higher the K_{d} , the higher is the selectivity of the solute to the solid phase. The K_d of Mg-Al LDH decreased with increasing competitive Cl⁻ concentration, while that of for barite was nearly independent of the Cl⁻ concentrations. At an initial Cl⁻ concentration of 10 mmol L^{-1} , the K_d of barite was two orders of magnitude greater than that of Mg-Al LDH. Hence, the coprecipitation method using barite performs better than the conventional adsorption method using LDH for IO₃⁻ removal when competitive anions are present. IO3- was also effectively removed from aqueous solutions in the presence of NO₃⁻ and SO₄²⁻, which are also environmentally common anions. Coprecipitation with barite will be a promising tool for removing radioactive IO3⁻ from various aqueous solutions contaminated with IO3-.

(Kohei Tokunaga)

Reference

Tokunaga, K. et al., Effective Removal of Iodate by Coprecipitation with Barite: Behavior and Mechanism, Chemosphere, vol.266, 2021, 129104, 10p.