6–4 Upgrading H₂ Production Efficiency in the IS Process

— Corrosion Stability Improvement of the H₂ Separation Membrane for HI Decomposition –

Fig.6-7 Schematic of a membrane reactor equipped with an H₂ separation membrane for HI decomposition In a membrane reactor, HI gas is catalytically decomposed into H₂ and I₂, and the H₂ produced is separated by a membrane, thereby driving HI decomposition. The membrane consists of three layers: a base α -Al₂O₃ support tube, a middle layer (γ -Al₂O₃ or SiO₂), and a top H₂-selective SiO₂ layer.

Fig.6-8 Change in the H₂ permeance of membranes with middle layers composed of (a) γ-Al₂O₃ and (b) SiO₂ under corrosive HI exposure

The new H₂-separation membrane with the middle layer changed from the conventional γ -Al₂O₃ to SiO₂ showed stable performance in a corrosive HI environment.

Thermochemical iodine–sulfur (IS) process, which employs nuclear heat to decompose water, is considered the most suitable solution for producing large amounts of H₂ without emitting CO₂. The IS process consists of three coupled chemical reactions (the Bunsen reaction, sulfuric acid decomposition reaction, and hydrogen iodide decomposition reaction).

One of the technical challenges in the development of the IS process is the separation of H_2 from the mixture of corrosive gases hydrogen iodide and iodine during hydrogen iodide decomposition (2HI \rightarrow H₂ + I₂). To solve this problem, there is a need for a membrane reactor with an H₂ separation membrane (Fig.6-7) that is capable of equilibrium shifting and can handle corrosive environment.

The conventional H₂ separation membranes used for HI decomposition consist of three layers: a base α -Al₂O₃ support tube (average pore size: 200 nm) that maintains mechanical strength, middle γ -Al₂O₃ layer (3 nm) to avoid pinhole defects in the top layer, and top SiO₂ layer (<0.4 nm) to selectively separate H₂.

In the HI exposure tests of these conventional membranes, a considerable increase in the H_2 permeance was observed after

200 h. This is because the middle γ -Al₂O₃ layer was corroded by HI gas and partially peeled off (Fig.6-8(a)). In other words, the large increase in H₂ permeance was attributed to the lack of corrosion stability of the middle layer to HI gas. Therefore, to improve corrosion stability against HI exposure, the fragile middle y-Al₂O₃ layer should be replaced by a more corrosionresistant material. For this purpose, a new H2-separation membrane was developed with a middle SiO₂ layer that is thermally and chemically stable and has excellent pore size controllability. The new membrane with this middle SiO₂ layer showed only a slight decrease in H₂ permeance after 300 h of exposure to HI gas, and there were no significant changes on the membrane surface (Fig.6-8(b)); the middle SiO₂ layer remained unchanged and stable. Thus, we successfully developed an H₂ separation membrane with high corrosion stability in an HI environment. The membrane with middle SiO₂ layer is suitable for membrane reactors that produce H₂ via HI decomposition.

This work was partially supported by the Council for Science, Technology and Innovation, Cross-ministerial Strategic Innovation Promotion Program, "Energy Carrier" (Funding agency: JST). (Odtsetseg Myagmarjav)

Reference

Myagmarjav, O. et al., Fabrication, Permeation, and Corrosion Stability Measurements of Silica Membranes for HI Decomposition in the Thermochemical Iodine-Sulfur Process, International Journal of Hydrogen Energy, vol.46, issue 56, 2021, p.28435–28449.