量子ビーム応用研究

量子ビームテクノロジーが拓く未来

量子ビームとは

量子ビームは、電磁波 (レーザー, X線, γ線など)、 レプトン(電子,陽電子,ミュオン,ニュートリノなど)、 ハドロン(陽子、中性子、メソン、イオンなど)がつく る波動性と粒子性をあわせ持つ高品位のビームです。原 子力機構では、稼動している研究炉や加速器などからの 中性子ビーム, イオンビーム, 電子線, γ線, 高強度極 短パルスレーザー、高輝度放射光などの量子ビームを利 用する先端的研究開発を進めることにより(図4-1)、科 学技術・学術の進歩と産業の振興に貢献することを目指 しています。具体的には、科学技術基本計画に定められ た重点推進4分野などを中心に、次のような研究開発を 進めています。

ナノテクノロジー・材料分野では高耐久性燃料電池膜 の開発や超伝導機構の解明研究など、生命科学・バイオ 技術分野では、創薬などを目指したタンパク質構造解析 やDNA損傷・修復機構解明と新品種創出の研究など、環 境・エネルギー分野では原子炉材料の応力腐食割れ機構 解明と対策技術開発や環境浄化材料・環境浄化技術の開 発など、情報通信分野では耐放射線半導体の開発や新規 半導体創製の研究などを行っています。また、先進医療 分野では高強度レーザーを使って陽子ビームを発生させる ことにより、がん治療装置の超小型化を目指すとともに、 環境と人に優しい医用材料の開発などを行っています。

量子ビームの特徴

これらの研究開発ではそれぞれの量子ビームが持つ特 徴が有効に、また有機的に活かされて、原子力機構なら ではのユニークな成果を多く創出しています。量子ビー ムの特徴を挙げると、優れた観察機能(「観る」)と加工 機能(「造る」)です。品質の良い原子やイオンなどのビー ムでは、ナノレベルでの高精度な観察や加工が可能で す。原子の配列、電子の状態、元素の種類などのナノレ ベルでの観察や加工を通して、物質が超伝導になる謎、

生体が持っている様々な機能や反応の謎などに迫るとと もに、新しい医薬品、貴金属を多用しない自動車排気ガ ス触媒、カーボンニュートラルである植物由来の脱石油 材料の開発など、様々なニーズに貢献しています。

量子ビームは局所的・瞬間的に大きなエネルギーを与 えることができる手段としても大きな特徴を持っていま す。極単パルス高強度レーザーではフェムト(10-15)秒 やアト(10-18)秒での量子ビーム利用の基盤も開拓され つつあり、これまで見えなかった時間スケールでの観察 技術や極短時間にエネルギーを集中させることによる新 しい現象の発生と応用の研究なども展開しつつあります。

最近の成果

具体的な成果の例として、高品位なビームを形成する 技術の開発では高強度レーザーで生成する光速飛翔鏡の 理論を実験で実証し、アト (10-18) 秒での波長可変光源 などの新しい量子ビーム発生技術の可能性を示したこと や、医療応用を目指したレーザーによる高エネルギー粒 子生成が着実な進展について、トピックス4-1, 4-5 などで紹介しております。トピックス 4-3, 4-6 では 巨大な負の熱膨張係数を持つ物質の構造の解明や重イオ ンが示す細胞への特別な効果の解明など、基礎科学の新 たな量子ビーム利用の可能性を提示しました。トピック ス4-4, 4-9では、電子線やγ線を用いた橋かけやグ ラフト (接木) 技術を用いた植物由来の脱石油素材の開 発、燃料電池用の素材として開発が求められている高温 で動作する電解質膜の開発などを行うとともに、イオン ビームを用いて、キク科の新しい花色を持つ新品種の実 用化に成功しています。また、中性子や放射光を用いた 残留応力測定技術や、短パルスレーザーによる非熱蒸発 加工技術や材料の元素配列を分析する技術を、高速増殖 炉プロジェクトの課題解決に応用するために原子力機構 内での連携協力を深め基礎研究からの支援を進め課題の 解決に貢献しています。

図 4-1 原子力機構の量子ビーム施設群